The original code only folded SRA into ROTATE ... SELECTED BITS
if there was no outer shift. This patch splits out that check
and generalises it slightly. The extra cases aren't really that
interesting, but this is paving the way for RNSBG support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186571 91177308-0d34-0410-b5e6-96231b3b80d8
In hindsight, using "RISBG" for something that can be any type of
R.SBG instruction was a bit confusing, so this renames it to RxSBG.
That might not be the best choice either, since there is an instruction
called RXSBG, but hopefully the lower-case letter stands out enough.
While there I fixed a couple of GNUisms that had crept in --
sorry about that!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186569 91177308-0d34-0410-b5e6-96231b3b80d8
Support for dynamic stack alignments in the PPC backend has been unfinished, in
part because it depends on dynamic stack realignment (which I only just
recently implemented fully). Now we can also support dynamic allocas with
higher than the default target stack alignment (16 bytes).
In order to round-up the requested size to the maximum requested alignment, we
need an additional register to hold the rounded-up size. We're already using one
scavenged register to hold the previous stack-pointer value (which needs to be
stored with the signal-safe stdux update), and so when we have dynamic allocas
and a large alignment, we allocate two emergency spill slots for the scavenger.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186562 91177308-0d34-0410-b5e6-96231b3b80d8
First, this changes the base-pointer implementation to remove an unnecessary
complication (and one that is incompatible with how builtin SjLj is
implemented): instead of using r31 as the base pointer when it is not needed as
a frame pointer, now the base pointer will always be r30 when needed.
Second, we introduce another pseudo register, BP, which is used just like the FP
pseudo register to refer to the base register before we know for certain what
register it will be.
Third, we now save BP into the jmp_buf, and restore r30 from that slot in
longjmp. If the function that called setjmp did not use a base pointer, then
r30 will be overwritten by the setjmp-calling-function's restore code. FP
restoration (which is restored into r31) works the same way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186545 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new class for non-predicable NEON instructions and a
new DecoderNamespace for v8 NEON instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186504 91177308-0d34-0410-b5e6-96231b3b80d8
My patch 'r183551 - ARM FastISel integer sext/zext improvements' was incorrect when emitting ARM register-immediate ASR, LSL, LSR instructions: they are pseudo-instructions in ARMInstrInfo.td and I should have used MOVsi instead.
This is not an issue when code is generated through a .s file, but is an issue when generated straight to a .o (-filetype=obj).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186489 91177308-0d34-0410-b5e6-96231b3b80d8
Because the builtin longjmp implementation uses a CTR-based indirect jump, when
the control flow arrives at the builtin setjmp call, the CTR register has
necessarily been clobbered. Correspondingly, this adds CTR to the list of
implicit definitions of the builtin setjmp pseudo instruction.
We don't need to add CTR to the implicit definitions of builtin longjmp
because, even though it does clobber the CTR register, the control flow cannot
return to inside the loop unless there is also a builtin setjmp call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186488 91177308-0d34-0410-b5e6-96231b3b80d8
This builds on some frame-lowering code that has existed since 2005 (r24224)
but was disabled in 2008 (r48188) because it needed base pointer support to
function correctly. This implementation follows the strategy suggested by Dale
Johannesen in r48188 where the following comment was added:
This does not currently work, because the delta between old and new stack
pointers is added to offsets that reference incoming parameters after the
prolog is generated, and the code that does that doesn't handle a variable
delta. You don't want to do that anyway; a better approach is to reserve
another register that retains to the incoming stack pointer, and reference
parameters relative to that.
And now we do exactly that. If we don't need a frame pointer, then we use r31
as a base pointer. If we do need a frame pointer, then we use r30 as a base
pointer. The base pointer retains the value of the stack pointer before it was
decremented in the prologue. We then use the base pointer to resolve all
negative frame indicies. The basic scheme follows that for base pointers in the
X86 backend.
We use a base pointer when we need to dynamically realign the incoming stack
pointer. This currently applies only to static objects (dynamic allocas with
large alignments, and base-pointer support in SjLj lowering will come in future
commits).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186478 91177308-0d34-0410-b5e6-96231b3b80d8
block. Blocks that have an indirect branch terminator, even if it's not the
last terminator, should still be treated as unanalyzable.
<rdar://problem/14437274>
Reducing a useful regression test case is proving difficult - I hope to have
one soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186461 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an instruction alias to make the assembler recognize the alternate literal form: pli [PC, #+/-<imm>]
See A8.8.129 in the ARM ARM (DDI 0406C.b).
Fixes <rdar://problem/14403733>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186459 91177308-0d34-0410-b5e6-96231b3b80d8
This centralizes the handling of O_BINARY and opens the way for hiding more
differences (like how open behaves with directories).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186447 91177308-0d34-0410-b5e6-96231b3b80d8
Use PMIN/PMAX for UGE/ULE vector comparions to reduce the number of required
instructions. This trick also works for UGT/ULT, but there is no advantage in
doing so. It wouldn't reduce the number of instructions and it would actually
reduce performance.
Reviewer: Ben
radar:5972691
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186432 91177308-0d34-0410-b5e6-96231b3b80d8
Previously an asm operand with no operand modifier would give the error
"invalid operand in inline asm".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186407 91177308-0d34-0410-b5e6-96231b3b80d8
We'd forgotten to provide string representations for the special ARMISD atomic
nodes; this adds them in. No effect on CodeGen, just makes the output of
"-view-whatever-dags" slightly more readable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186406 91177308-0d34-0410-b5e6-96231b3b80d8
Another patch in the series to make more use of R.SBG. This one extends
r186072 and r186073 to handle cases where the AND is inside the shift.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186399 91177308-0d34-0410-b5e6-96231b3b80d8
Intrinsics already existed for the 64-bit variants, so these support operations
of size at most 32-bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186392 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables calls to __aeabi_idivmod when in EABI mode,
by using the remainder value returned on registers (R1),
enabled by the ARM triple "none-eabi". Note that Darwin and
GNUEABI triples will continue lowering on GNU style, that is,
using the stack for the remainder.
Still need to add SREM/UREM support fix for 64-bit lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186390 91177308-0d34-0410-b5e6-96231b3b80d8
This change mirrors the changes that were made to the X86 and ARM targets to
support subtarget feature changing. As indicated in r182899, the mechanism is
still undergoing revision, and so as with the X86 and ARM targets, there is no
test case yet (there is no effective functionality change).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186357 91177308-0d34-0410-b5e6-96231b3b80d8
PPCInstrInfo::insertSelect and PPCInstrInfo::canInsertSelect were computing the
common subclass of the true and false inputs, and then selecting either the
32-bit or the 64-bit isel variant based on the result of calling
PPC::GPRCRegClass.hasSubClassEq(RC) and PPC::G8RCRegClass.hasSubClassEq(RC)
(where RC is the common subclass). Unfortunately, this is not quite right: if
we have something like this:
%vreg8<def> = SELECT_CC_I8 %vreg4<kill>, %vreg7<kill>, %vreg6<kill>, 76;
G8RC_and_G8RC_NOX0:%vreg8 CRRC:%vreg4 G8RC_NOX0:%vreg7,%vreg6
then the common subclass of G8RC_and_G8RC_NOX0 and G8RC_NOX0 is G8RC_NOX0, and
G8RC_NOX0 is not a subclass of G8RC (because it also contains the ZERO8
pseudo-register). As a result, we also need to check the common subclass
against GPRC_NOR0 and G8RC_NOX0 explicitly.
This had not been a problem for clients of insertSelect that called
canInsertSelect first (because it had a compensating mistake), but insertSelect
is also used by the PPC pseudo-instruction expander, and this error was causing
a problem in that context.
This problem was found by csmith.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186343 91177308-0d34-0410-b5e6-96231b3b80d8
ARM paired GPR COPY was being lowered to two MOVr without CC. This
patch puts the CC back.
My test is a reduction of the case where I encountered the issue,
64-bit atomics use paired GPRs.
The issue only occurs with selectionDAG, FastISel doesn't encounter it
so I didn't bother calling it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186226 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes a 35% degradation compared to unvectorized code in
MiBench/automotive-susan and an equally serious regression on a private
image processing benchmark.
radar://14351991
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186188 91177308-0d34-0410-b5e6-96231b3b80d8
Address calculation for gather/scather in vectorized code can incur a
significant cost making vectorization unbeneficial. Add infrastructure to add
cost.
Tests and cost model for targets will be in follow-up commits.
radar://14351991
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186187 91177308-0d34-0410-b5e6-96231b3b80d8
In particular:
movsbw %al, %ax --> cbtw
movswl %ax, %eax --> cwtl
movslq %eax, %rax --> cltq
According to Intel's manual those have the same performance characteristics but
come with a smaller encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186174 91177308-0d34-0410-b5e6-96231b3b80d8
Normal (sext (setcc ...)) sequences are optimised into
(select_cc ..., -1, 0) by DAGCombiner::visitSIGN_EXTEND.
However, this is deliberately not done for vectors, and after
vector type legalization we have (sext_inreg (setcc ...)) instead.
I wondered about trying to extend DAGCombiner to handle this case too,
but it seemed to be a loss on some other targets I tried, even those for
which SETCC isn't "legal" and SELECT_CC is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186149 91177308-0d34-0410-b5e6-96231b3b80d8
GPR and FPR constraints like "{r2}" and "{f2}" weren't handled correctly
because the name-to-regno mapping depends on the value type and
(because of that) the internal names in RegStrings are not the
same as the AsmName.
CC constraints like "{cc}" didn't work either because there was no
associated register class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186148 91177308-0d34-0410-b5e6-96231b3b80d8
If the source of these instructions is spilled we should load the destination.
If the destination is spilled we should store the source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186147 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds explicit calling convention types for the Win64 and
System V/x86-64 ABIs. This allows code to override the default, and use
the Win64 convention on a target that wants to use SysV (and
vice-versa). This is needed to implement the `ms_abi` and `sysv_abi` GNU
attributes.
Reviewers:
CC:
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186144 91177308-0d34-0410-b5e6-96231b3b80d8
We had patterns to match v4i32 immAllZerosV -> V_SET0, but not patterns for
v8i16 (which occurs in the test case) or v16i8. The same was true for
V_SETALLONES (so I added the associated patterns for those as well).
Another bug found by llvm-stress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186108 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug (found by csmith) at -O0 where we attempt to create a RLWIMI
with an out-of-range operand. Most uses of the isRunOfOnes function are guarded
by a condition that the value is not zero. This was not true in two places, and
in both places a zero input would result in an out-of-rage MB value (= 32).
To fix this, isRunOfOnes returns false on a zero input (and I've remove one
now-redundant guard).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186101 91177308-0d34-0410-b5e6-96231b3b80d8
RISBG can handle some ANDs for which no AND IMMEDIATE exists.
It also acts as a three-operand AND for some cases where an
AND IMMEDIATE could be used instead.
It might be worth adding a pass to replace RISBG with AND IMMEDIATE
in cases where the register operands end up being the same and where
AND IMMEDIATE is smaller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186072 91177308-0d34-0410-b5e6-96231b3b80d8
RISBG has three 8-bit operands (I3, I4 and I5). I'd originally
restricted all three to 6 bits, since that's the only range we intended
to use at the time. However, the top bit of I4 acts as a "zero" flag for
RISBG, while the top bit of I3 acts as a "test" flag for RNSBG & co.
This patch therefore allows them to have the full 8-bit range.
I've left the fifth operand as a 6-bit value for now since the
upper 2 bits have no defined meaning.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186070 91177308-0d34-0410-b5e6-96231b3b80d8
Enough for the radeonsi driver to use it for calculating derivatives.
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186012 91177308-0d34-0410-b5e6-96231b3b80d8
In discussing this change with Bill Schmidt, it was decided that the original
comment about negative FIs was incorrect. We'll still exclude them for now, but
now with a more-accurate explanation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186005 91177308-0d34-0410-b5e6-96231b3b80d8
Currently ARM is the only backend that supports FMA instructions (for at least some subtargets) but does not implement this virtual, so FMAs are never generated except from explicit fma intrinsic calls. Apparently this is due to the fact that it supports both fused (one rounding step) and unfused (two rounding step) multiply + add instructions. This patch clarifies that this the case without changing behavior by implementing the virtual function to simply return false, as the default TargetLoweringBase version does.
It is possible that some cpus perform the fused version faster than the unfused version and vice-versa, so the function implementation should be revisited if hard data is found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185994 91177308-0d34-0410-b5e6-96231b3b80d8
Propagate the fix from r185712 to Thumb2 codegen as well. Original
commit message applies here as well:
A "pkhtb x, x, y asr #num" uses the lower 16 bits of "y asr #num" and
packs them in the bottom half of "x". An arithmetic and logic shift are
only equivalent in this context if the shift amount is 16. We would be
shifting in ones into the bottom 16bits instead of zeros if "y" is
negative.
rdar://14338767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185982 91177308-0d34-0410-b5e6-96231b3b80d8
A more complete example of the bug in PR16556 was recently provided,
showing that the previous fix was not sufficient. The previous fix is
reverted herein.
The real problem is that ReplaceNodeResults() uses LowerFP_TO_INT as
custom lowering for FP_TO_SINT during type legalization, without
checking whether the input type is handled by that routine.
LowerFP_TO_INT requires the input to be f32 or f64, so we fail when
the input is ppcf128.
I'm leaving the test case from the initial fix (r185821) in place, and
adding the new test as another crash-only check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185959 91177308-0d34-0410-b5e6-96231b3b80d8
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185956 91177308-0d34-0410-b5e6-96231b3b80d8
In the commit message to r185476 I wrote:
>The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
>correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
>This causes some confusion with the asm parser, since VK_PPC_TLSGD
>is output as @tlsgd, which is then read back in as VK_TLSGD.
>
>To avoid this confusion, this patch removes the PowerPC-specific
>modifiers and uses the generic modifiers throughout. (The only
>drawback is that the generic modifiers are printed in upper case
>while the usual convention on PowerPC is to use lower-case modifiers.
>But this is just a cosmetic issue.)
This was unfortunately incorrect, there is is fact another,
serious drawback to using the default VK_TLSLD/VK_TLSGD
variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT
to return true, which in turn causes the ELFObjectWriter to emit
an undefined reference to _GLOBAL_OFFSET_TABLE_.
This is a problem on powerpc64, because it uses the TOC instead
of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_,
so the symbol remains undefined. This means shared libraries
using TLS built with the integrated assembler are currently
broken.
While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation
probably ought to be properly fixed at some point, for now I'm
simply reverting the r185476 commit. Now this in turn exposes
the breakage of handling @tlsgd/@tlsld in the asm parser that
this check-in was originally intended to fix.
To avoid this regression, I'm also adding a different fix for
this problem: while common code now parses @tlsgd as VK_TLSGD,
a special hack in the asm parser translates this code to the
platform-specific VK_PPC_TLSGD that the back-end now expects.
While this is not really pretty, it's self-contained and
shouldn't hurt anything else for now. One the underlying
problem is fixed, this hack can be reverted again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185945 91177308-0d34-0410-b5e6-96231b3b80d8
Test is not included as it is several 1000 lines long.
To test this functionnality, a test case must generate at least 2 ALU clauses,
where an ALU clause is ~110 instructions long.
NOTE: This is a candidate for the stable branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185943 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC assembler is supposed to provide a directive .machine
that allows switching the supported CPU instruction set on the fly.
Since we do not yet check CPU feature sets at all and always accept
any available instruction, this is not really useful at this point.
However, it makes sense to accept (and ignore) ".machine any" to
avoid spuriously rejecting existing assembler files that use this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185924 91177308-0d34-0410-b5e6-96231b3b80d8
Look for patterns of the form (store (load ...), ...) in which the two
locations are known not to partially overlap. (Identical locations are OK.)
These sequences are better implemented by MVC unless either the load or
the store could use RELATIVE LONG instructions.
The testcase showed that we weren't using LHRL and LGHRL for extload16,
only sextloadi16. The patch fixes that too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185919 91177308-0d34-0410-b5e6-96231b3b80d8
Use "STC;MVC" for memsets that are too big for two STCs or MV...Is yet
small enough for a single MVC. As with memcpy, I'm leaving longer cases
till later.
The number of tests might seem excessive, but f33 & f34 from memset-04.ll
failed the first cut because I'd not added the "?:" on the calculation
of Size1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185918 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the .llong PowerPC-specifc assembler directive.
In doing so, I notices that .word is currently incorrect: it is
supposed to define a 2-byte data element, not a 4-byte one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185911 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes another bug found by llvm-stress!
If we happen to be doing an i64 load or store into a stack slot that has less
than a 4-byte alignment, then the frame-index elimination may need to use an
indexed load or store instruction (because the offset may not be a multiple of
4, a requirement of the STD/LD instructions). The extra register needed to hold
the offset comes from the register scavenger, and it is possible that the
scavenger will need to use an emergency spill slot. As a result, we need to
make sure that a spill slot is allocated when doing an i64 load/store into a
less-than-4-byte-aligned stack slot.
Because test cases for things like this tend to be fairly fragile, I've
concatenated a few small bugpoint-reduced test cases together to form the
regression test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185907 91177308-0d34-0410-b5e6-96231b3b80d8
Explicit references to %AH for an i8 remainder instruction can lead to
references to %AH in a REX prefixed instruction, which causes things to
blow up. Do the same thing in FastISel as we do for DAG isel and instead
shift %AX right by 8 bits and then extract the 8-bit subreg from that
result.
rdar://14203849
http://llvm.org/bugs/show_bug.cgi?id=16105
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185899 91177308-0d34-0410-b5e6-96231b3b80d8
A setting in MCAsmInfo defines the "assembler dialect" to use. This is used
by common code to choose between alternatives in a multi-alternative GNU
inline asm statement like the following:
__asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2));
The meaning of these dialects is platform specific, and GCC defines those
for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for
new-style (PowerPC) mnemonics, like in the example above.
To be compatible with inline asm used with GCC, LLVM ought to do the same.
Specifically, this means we should always use assembler dialect 1 since
old-style mnemonics really aren't supported on any current platform.
However, the current LLVM back-end uses:
AssemblerDialect = 1; // New-Style mnemonics.
in PPCMCAsmInfoDarwin, and
AssemblerDialect = 0; // Old-Style mnemonics.
in PPCLinuxMCAsmInfo.
The Linux setting really isn't correct, we should be using new-style
mnemonics everywhere. This is changed by this commit.
Unfortunately, the setting of this variable is overloaded in the back-end
to decide whether or not we are on a Darwin target. This is done in
PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo
AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect
to 1 for both Darwin and Linux no longer allows us to make this distinction.
Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter
to distinguish Darwin targets, and ignores the SyntaxVariant parameter.
As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs
to be passed in by the caller when creating a target MCExpr. (To do so
this patch implicitly also reverts commit 184441.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185858 91177308-0d34-0410-b5e6-96231b3b80d8
Another bug found by llvm-stress! This fixes hitting
llvm_unreachable("Invalid integer vector compare condition");
at the end of getVCmpInst in PPCISelDAGToDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185855 91177308-0d34-0410-b5e6-96231b3b80d8
Another bug found by llvm-stress! This fixes crashing with:
LLVM ERROR: Cannot select: v4f32 = frem ...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185840 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the old-style time base instructions;
while new programs are supposed to use mfspr, the mftb instructions
are still supported and in use by existing assembler files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185829 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the basic mnemoics (with the L operand) for the
fixed-point compare instructions. These are defined as aliases for the
already existing CMPW/CMPD patterns, depending on the value of L.
This requires use of InstAlias patterns with immediate literal operands.
To make this work, we need two further changes:
- define a RegisterPrefix, because otherwise literals 0 and 1 would
be parsed as literal register names
- provide a PPCAsmParser::validateTargetOperandClass routine to
recognize immediate literals (like ARM does)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185826 91177308-0d34-0410-b5e6-96231b3b80d8
PPCTargetLowering::LowerFP_TO_INT() expects its source operand to be
either an f32 or f64, but this is not checked. A long double
(ppcf128) operand will normally be custom-lowered to a conversion to
f64 in this context. However, this isn't the case for an UNDEF node.
This patch recognizes a ppcf128 as a legal source operand for
FP_TO_INT only if it's an undef, in which case it creates an undef of
the target type.
At some point we might want to do a wholesale custom lowering of
ISD::UNDEF when the type is ppcf128, but it's not really clear that's
a great idea, and probably more work than it's worth for a situation
that only arises in the case of a programming error. At this point I
think simple is best.
The test case comes from PR16556, and is a crash-test only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185821 91177308-0d34-0410-b5e6-96231b3b80d8
I was originally going to use MVC for memmove too, but that's less of
a clear win. Remove some accidental left-overs in the previous commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185804 91177308-0d34-0410-b5e6-96231b3b80d8
Use MVC for memcpy in cases where a single MVC is enough. Using MVC is
a win for longer copies too, but I'll leave that for later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185802 91177308-0d34-0410-b5e6-96231b3b80d8
A "pkhtb x, x, y asr #num" uses the lower 16 bits of "y asr #num" and packs them
in the bottom half of "x". An arithmetic and logic shift are only equivalent in
this context if the shift amount is 16. We would be shifting in ones into the
bottom 16bits instead of zeros if "y" is negative.
radar://14338767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185712 91177308-0d34-0410-b5e6-96231b3b80d8
The stack coloring pass has code to delete stores and loads that become
trivially dead after coloring. Extend it to cope with single instructions
that copy from one frame index to another.
The testcase happens to show an example of this kicking in at the moment.
It did occur in Real Code too though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185705 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes foldMemoryOperandImpl() so that it doesn't create duplicated
frame MMOs. I hadn't realized when writing r185434 that it was the caller's
responsibility to add these.
No behavioural change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185704 91177308-0d34-0410-b5e6-96231b3b80d8
...now that the problem that prompted the restriction has been fixed.
The original spill-02.py was a compromise because at the time I couldn't
find an example that actually failed without the two scavenging slots.
The version included here did.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185701 91177308-0d34-0410-b5e6-96231b3b80d8
When a target@got@tprel or target@got@tprel@l symbol variant is used in
a fixup_ppc_half16 (*not* fixup_ppc_half16ds) context, we currently fail,
since the corresponding R_PPC64_GOT_TPREL16 / R_PPC64_GOT_TPREL16_LO
relocation types do not exist.
However, since such symbol variants resolve to GOT offsets which are
always 4-aligned, we can simply instead use the _DS variants of the
relocation types, which *do* exist.
The same applies for the @got@dtprel variants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185700 91177308-0d34-0410-b5e6-96231b3b80d8
This is another prerequisite for frame-to-frame MVC copies.
I'll commit the patch that makes use of the slot separately.
The downside of trying to test many corner cases with each of the
available addressing modes is that a fair few tests need to account
for the new frame layout. I do still think it's useful to have all
these tests though, since it's something that wouldn't get much coverage
otherwise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185698 91177308-0d34-0410-b5e6-96231b3b80d8
SystemZ wants normal register scavenging slots, as close to the stack or
frame pointer as possible. The only reason it was using custom code was
because PrologEpilogInserter assumed an x86-like layout, where the frame
pointer is at the opposite end of the frame from the stack pointer.
This meant that when frame pointer elimination was disabled,
the slots ended up being as close as possible to the incoming
stack pointer, which is the opposite of what we want on SystemZ.
This patch adds a new knob to say which layout is used and converts
SystemZ to use target-independent scavenging slots. It's one of the pieces
needed to support frame-to-frame MVCs, where two slots might be required.
The ABI requires us to allocate 160 bytes for calls, so one approach
would be to use that area as temporary spill space instead. It would need
some surgery to make sure that the slot isn't live across a call though.
I stuck to the "isFPCloseToIncomingSP - ..." style comment on the
"do what the surrounding code does" principle. The FP case is already
covered by several Systemz/frame-* tests, which fail without the
PrologueEpilogueInserter change, so no new ones are needed.
No behavioural change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185696 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the last missing construct to parse TLS-related
assembler code:
add 3, 4, symbol@tls
The ADD8TLS currently hard-codes the @tls into the assembler string.
This cannot be handled by the asm parser, since @tls is parsed as
a symbol variant. This patch changes ADD8TLS to have the @tls suffix
printed as symbol variant on output too, which allows us to remove
the isCodeGenOnly marker from ADD8TLS. This in turn means that we
can add a AsmOperand to accept @tls marked symbols on input.
As a side effect, this means that the fixup_ppc_tlsreg fixup type
is no longer necessary and can be merged into fixup_ppc_nofixup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185692 91177308-0d34-0410-b5e6-96231b3b80d8
In the SelectionDAG immediate operands to inline asm are constructed as
two separate operands. The first is a constant of value InlineAsm::Kind_Imm
and the second is a constant with the value of the immediate.
In ARMDAGToDAGISel::SelectInlineAsm, if we reach an operand of Kind_Imm we
should skip over the next operand too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185688 91177308-0d34-0410-b5e6-96231b3b80d8
This implements a proper PPCAsmBackend::writeNopData routine
that actually writes PowerPC nop instructions.
This fixes the last remaining difference in object file output
(text section) between the integrated assembler and GNU as
that I've seen anywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185662 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185642 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for specifying condition registers and
condition register fields via expressions using the symbols
defined by the PowerISA, like "4*cr2+eq".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185633 91177308-0d34-0410-b5e6-96231b3b80d8
This is purely academic because GHC calls are always tail calls so the register mask will never be used; however, this change makes the code clearer and brings the ARM implementation of the GHC calling convention in line with the X86 implementation. Also, it might save someone else some time trying to figuring out what is happening...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185592 91177308-0d34-0410-b5e6-96231b3b80d8
In the ARM back-end, build_vector nodes are lowered to a target specific
build_vector that uses floating point type.
This works well, unless the inserted bitcasts survive until instruction
selection. In that case, they incur moves between integer unit and floating
point unit that may result in inefficient code.
In other words, this conversion may introduce artificial dependencies when the
code leading to the build vector cannot be completed with a floating point type.
In particular, this happens when loads are not aligned.
Before this patch, in that case, the compiler generates general purpose loads
and creates the floating point vector from them, instead of directly using the
vector unit.
The patch uses a vector friendly sequence of code when the inserted bitcasts to
floating point survived DAGCombine.
This is done by a target specific DAGCombine that changes the target specific
build_vector into a sequence of insert_vector_elt that get rid of the bitcasts.
<rdar://problem/14170854>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185587 91177308-0d34-0410-b5e6-96231b3b80d8
Before the fix Thumb2 instructions of type "add rD, rN, #imm" (T3 encoding, see ARM ARM A8.8.4) with rD and rN both being low registers (r0-r7) were classified as having the T4 encoding.
The T4 encoding doesn't have a cc_out operand so for above instructions the operand gets erroneously removed, corrupting the token stream and leading to parse errors later in the process.
This bug prevented "add r1, r7, #0xcbcbcbcb" from being assembled correctly.
Fixes <rdar://problem/14224440>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185575 91177308-0d34-0410-b5e6-96231b3b80d8
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.
Current code however always emits mtcrf. This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible. It does create
inefficient code with the integrated assembler, however.
To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything. Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.
As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185561 91177308-0d34-0410-b5e6-96231b3b80d8
When accessing just a single CR register, it is always preferable to
use mfocrf instead of mfcr, if the former is available on the CPU.
Current code makes that distinction in many, but not all places
where a single CR register value is retrieved. One missing
location is PPCRegisterInfo::lowerCRSpilling.
To fix this and make this simpler in the future, this patch changes
the bulk of the back-end to always assume mfocrf is available and
simply generate it when needed.
On machines that actually do not support mfocrf, the instruction
is replaced by mfcr at the very end, in EmitInstruction.
This has the additional benefit that we no longer need the
MFCRpseud hack, since before EmitInstruction we always have
a MFOCRF instruction pattern, which already models data flow
as required.
The patch also adds the MFOCRF8 version of the instruction,
which was missing so far.
Except for the PPCRegisterInfo::lowerCRSpilling case, no change
in generated code intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185556 91177308-0d34-0410-b5e6-96231b3b80d8
The subroutine getCRIdxForSetCC has a parameter "Other" and comment:
If this returns with Other != -1, then the returned comparison
is an or of two simpler comparisons.
However for at least the last five years this routine has never
returned a value of Other != -1; these cases are now handled
differently to begin with.
This patch removes the parameter and the code in SelectSETCC that
attempted to handle the Other != -1 case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185541 91177308-0d34-0410-b5e6-96231b3b80d8
A couple of AltiVec patterns are just specialized forms of the
generic instruction pattern, and should therefore be marked
isCodeGenOnly to avoid confusing the asm parser:
VCFSX_0, VCTUXS_0, VCFUX_0, VCTSXS_0, and V_SETALLONES.
Noticed by inspection of the generated PPCGenAsmMatcher.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185533 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the generic forms of mtspr/mfspr
for the asm parser. The compiler will continue to use
the specialized patters for mtlr etc. since those are
needed to correctly describe data flow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185532 91177308-0d34-0410-b5e6-96231b3b80d8
Add a mapping from register-based <INSN>R instructions to the corresponding
memory-based <INSN>. Use it to cut down on the number of spill loads.
Some instructions extend their operands from smaller fields, so this
required a new TSFlags field to say how big the unextended operand is.
This optimisation doesn't trigger for C(G)R and CL(G)R because in practice
we always combine those instructions with a branch. Adding a test for every
other case probably seems excessive, but it did catch a missed optimisation
for DSGF (fixed in r185435).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185529 91177308-0d34-0410-b5e6-96231b3b80d8
1. it should accept only 4-byte aligned addresses
2. the maximum offset should be 1020
3. it should be encoded with the offset scaled by two bits
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185528 91177308-0d34-0410-b5e6-96231b3b80d8
Swift cores implement store barriers that are stronger than the ARM
specification but weaker than general barriers. They are, in fact, just about
enough to provide the ordering needed for atomic operations with release
semantics.
This patch makes use of that quirk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185527 91177308-0d34-0410-b5e6-96231b3b80d8
Rename Function->DispKey and PairType->DispSize. I'd originally used
"Function" because I thought it might be useful for other InstMappings.
However, it turns out that having two very similar instructions with the
same Function makes it pretty useless for anything other than the displacement
size key. Other InstMappings will want the key to be defined for only one
instruction in the pair.
No behavioural change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185526 91177308-0d34-0410-b5e6-96231b3b80d8
Get rid of some old code (and associated FIXME) for handling the
caller-allocated register save area. No behavioural change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185525 91177308-0d34-0410-b5e6-96231b3b80d8
*NOTE* In a recent version of posix, they added the restrict keyword to the
arguments for this function. From some spelunking it seems that on some
platforms, the call has restrict on its arguments and others it does not. Thus I
left off the restrict keyword from the function prototype in the comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185501 91177308-0d34-0410-b5e6-96231b3b80d8
This patch now adds support for recognizing TLS call sequences in
the asm parser. This needs a new pattern BL8_TLS, which is like
BL8_NOP_TLS except without nop. That pattern is used for the
asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185478 91177308-0d34-0410-b5e6-96231b3b80d8
As part of the global-dynamic and local-dynamic TLS sequences, we need
to use a special form of the call instruction:
bl __tls_get_addr(sym@tlsld)
bl __tls_get_addr(sym@tlsgd)
which generates two fixups. The current implementation of this causes
problems with recognizing this form in the asm parser. To fix this,
this patch reworks operand processing for this special form by using
a single operand to hold both __tls_get_addr and sym@tlsld and defining
a print method to output the above form, and an encoding method to
generate the two fixups.
As a side simplification, the patch replaces the two instruction
patterns BL8_NOP_TLSGD and BL8_NOP_TLSLD by a single BL8_NOP_TLS,
since the patterns already operate in an identical fashion (whether
we have a local-dynamic or global-dynamic symbol is already encoded
in the symbol modifier).
No change in code generation intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185477 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
This causes some confusion with the asm parser, since VK_PPC_TLSGD
is output as @tlsgd, which is then read back in as VK_TLSGD.
To avoid this confusion, this patch removes the PowerPC-specific
modifiers and uses the generic modifiers throughout. (The only
drawback is that the generic modifiers are printed in upper case
while the usual convention on PowerPC is to use lower-case modifiers.
But this is just a cosmetic issue.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185476 91177308-0d34-0410-b5e6-96231b3b80d8
This adds an implementation of getDebugThreadLocalSymbol for
(64-bit) PowerPC. This needs to return a generic MCExpr
since on ppc64, we need to add a bias of 0x8000 to the
value returned by the R_PPC64_DTPREL64 relocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185461 91177308-0d34-0410-b5e6-96231b3b80d8
This allows getDebugThreadLocalSymbol to return a generic MCExpr
instead of just a MCSymbolRefExpr.
This is in preparation for supporting debug info for TLS variables
on PowerPC, where we need to describe the variable location using
a more complex expression than just MCSymbolRefExpr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185460 91177308-0d34-0410-b5e6-96231b3b80d8
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185436 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes some cases where we were using full 64-bit division for (sdiv i32, i32)
and (sdiv i64, i32).
The "32" in "SDIVREM32" just refers to the second operand. The first operand
of all *DIVREM*s is a GR128.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185435 91177308-0d34-0410-b5e6-96231b3b80d8
Try to use MVC when spilling the destination of a simple load or the source
of a simple store. As explained in the comment, this doesn't yet handle
the case where the load or store location is also a frame index, since
that could lead to two simultaneous scavenger spills, something the
backend can't handle yet. spill-02.py tests that this restriction kicks in,
but unfortunately I've not yet found a case that would fail without it.
The volatile trick I used for other scavenger tests doesn't work here
because we can't use MVC for volatile accesses anyway.
I'm planning on relaxing the restriction later, hopefully with a test
that does trigger the problem...
Tests @f8 and @f9 also showed that L(G)RL and ST(G)RL were wrongly
classified as SimpleBDX{Load,Store}. It wouldn't be easy to test for
that bug separately, which is why I didn't split out the fix as a
separate patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185434 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first use of D(L,B) addressing, which required a fair bit
of surgery. For that reason, the patch just adds the instruction
definition and the associated assembler and disassembler support.
A later patch will actually make use of it for codegen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185433 91177308-0d34-0410-b5e6-96231b3b80d8
r182680 replaced CountLeadingZeros_32 with a template function
countLeadingZeros that relies on using the correct argument type to give
the right result. The type passed in the XCore backend after this
revision was incorrect in a couple of places.
Patch by Robert Lytton.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185430 91177308-0d34-0410-b5e6-96231b3b80d8
According to ARM EHABI section 9.2, if the
__aeabi_unwind_cpp_pr1() or __aeabi_unwind_cpp_pr2() is
used, then the handler data must be emitted after the unwind
opcodes. The handler data consists of several words, and
should be terminated by zero.
In case that the .handlerdata directive is not specified by
the programmer, we should emit zero to terminate the handler
data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185422 91177308-0d34-0410-b5e6-96231b3b80d8
There are a couple of (small) related changes here:
1. The printed name of the VRSAVE register has been changed from VRsave to
vrsave in order to match the name accepted by GNU binutils.
2. Support for parsing vrsave has been added to the asm parser (it seems that
there was no test case specifically covering this code, so I've added one).
3. The list of Altivec registers, which was common to all calling conventions,
has been separated out. This allows us to define the base CSR lists, and then
lists for each ABI with Altivec included. This allows SjLj, for example, to
work correctly on non-Altivec targets without using unnatural definitions of
the NoRegs CSR list.
4. VRSAVE is now always reserved on non-Darwin targets and all Altivec
registers are reserved when Altivec is disabled.
With these changes, it is now possible to compile a function containing
__builtin_unwind_init() on Linux/PPC64 with debugging information. This did not
work previously because GNU binutils assumes that all .cfi_offset offsets will
be 8-byte aligned on PPC64 (and errors out if you provide a non-8-byte-aligned
offset). This is not true for the vrsave register, however, because this
register is used only on Darwin, GCC does not bother printing a .cfi_offset
entry for it (even though there is a slot in the stack frame for it as
specified by the ABI). This change allows us to do the same: we will also not
print .cfi_offset directives for vrsave.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185409 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for TLS data relocations and modifiers:
.quad target@dtpmod
.quad target@tprel
.quad target@dtprel
Currently exploited by the asm parser only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185394 91177308-0d34-0410-b5e6-96231b3b80d8
Restrict the current TLS support to X86 ELF for now. Test that we don't
produce it on PPC & we can flesh that test case out with the right thing
once someone implements it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185389 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for all missing condition register logical
instructions and extended mnemonics to the asm parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185387 91177308-0d34-0410-b5e6-96231b3b80d8
Create a dedicated register class for floating point condition code registers and
move FCC0 from register class CCR to the new register class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185373 91177308-0d34-0410-b5e6-96231b3b80d8
Although you can't generate this from C on PPC64, if you have a loop using a
64-bit counter on PPC32 then you can't form a CTR-based loop for it. This had
been cauing the PPCCTRLoops pass to assert.
Thanks to Joerg Sonnenberger for providing a test case!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185361 91177308-0d34-0410-b5e6-96231b3b80d8
According to the AArch64 ELF specification (4.6.8), it's the
assembler's responsibility to make sure the shift amount is correct in
relocated MOVZ/MOVK instructions.
This wasn't being obeyed by either the MCJIT CodeGen or RuntimeDyldELF
(which happened to work out well for JIT tests). This commit should
make us compliant in this area.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185360 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out I'd misread the architecture reference manual and thought
that was a load/store-store barrier, when it's not.
Thanks for pointing it out Eli!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185356 91177308-0d34-0410-b5e6-96231b3b80d8
A @got reference must always result in a relocation, so that
the linker has a chance to set up the GOT entry, even if the
symbol happens to be local.
Add a PPCELFObjectWriter::ExplicitRelSym routine that enforces
a relocation to be emitted for GOT references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185353 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the "sync $L" instruction with operand,
and provides aliases for "lwsync" and "ptesync".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185344 91177308-0d34-0410-b5e6-96231b3b80d8
I believe the full "dmb ish" barrier is not required to guarantee release
semantics for atomic operations. The weaker "dmb ishst" prevents previous
operations being reordered with a store executed afterwards, which is enough.
A key point to note (fortunately already correct) is that this barrier alone is
*insufficient* for sequential consistency, no matter how liberally placed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185339 91177308-0d34-0410-b5e6-96231b3b80d8
Since we were explicitly not calling AsmPrinter::doInitialization,
any module-scope inline asm was not being printed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185336 91177308-0d34-0410-b5e6-96231b3b80d8
We are using virtual registers throughout now, but we still need
to keep a few physical registers per class around to keep the
infrastructure happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185334 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a case where we were incorrectly sign-extending a value when we should have been zero-extending the value.
Also change some SIGN_EXTEND to ANY_EXTEND because we really dont care and may have more opportunity to fold subexpressions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185331 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PR16418, which reports that a function calling
__builtin_unwind_init() asserts. The cause is that this generates a
spill/restore for VRSAVE, and we support that only on Darwin (because VRSAVE is
only really used on Darwin).
The test case checks only that we don't crash. We can add correctness checks
once someone verifies what behavior the function is supposed to have.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185235 91177308-0d34-0410-b5e6-96231b3b80d8
Change assert("text") to assert(0 && "text"). The first case is a const char *
to bool conversion, which always evaluates to true, never triggering the
assert. The second case will always trigger the assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185227 91177308-0d34-0410-b5e6-96231b3b80d8
Patch By: Alex Deucher
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185209 91177308-0d34-0410-b5e6-96231b3b80d8
Based on GCC's output for TLS variables (OP_constNu, x@dtpoff,
OP_lo_user), this implements debug info support for TLS in ELF. Verified
that this output is correct/sufficient on Linux (using gold - if you're
using binutils-ld, you'll need something with the fix for
http://sourceware.org/bugzilla/show_bug.cgi?id=15685 in it).
Support on non-ELF is sort of "arbitrary" at the moment - if Apple folks
want to discuss (or just go ahead & implement) how this should work in
MachO, etc, I'm open.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185203 91177308-0d34-0410-b5e6-96231b3b80d8
Under certain (evidently rare) circumstances, this code used to convert OR(a,
AND(x, y)) into OR(a, x). This was incorrect.
While there, I've added a comment to the code immediately above.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185201 91177308-0d34-0410-b5e6-96231b3b80d8
Fix ABI handling for function
returning bool -- use st.param.b32 to return the value
and use ld.param.b32 in caller to load the return value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185177 91177308-0d34-0410-b5e6-96231b3b80d8
This patch assigns paired GPRs for inline asm with
64-bit data on ARM. It's enabled for both ARM and Thumb to support modifiers
like %H, %Q, %R.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185169 91177308-0d34-0410-b5e6-96231b3b80d8
We were generating intrinsics for NEON fixed-point conversions that didn't
exist (e.g. float -> i16). There are two cases to consider:
+ iN is smaller than float. In this case we can do the conversion but need an
extend or truncate as well.
+ iN is larger than float. In this case using the NEON conversion would be
incorrect so we don't perform any combining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185158 91177308-0d34-0410-b5e6-96231b3b80d8
The mapping between SRS pseudo-instructions and SRS native instructions was incorrect, the correct mapping is:
srsfa -> srsib
srsea -> srsia
srsfd -> srsdb
srsed -> srsda
This fixes <rdar://problem/14214734>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185155 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185135 91177308-0d34-0410-b5e6-96231b3b80d8