- If INSERT_VECTOR_ELT is supported (above SSE2, either by custom
sequence of legal insn), transform BUILD_VECTOR into SHUFFLE +
INSERT_VECTOR_ELT if most of elements could be built from SHUFFLE with few
(so far 1) elements being inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166288 91177308-0d34-0410-b5e6-96231b3b80d8
Removed extra stack frame object for fixed byval arguments,
VarArgsStyleRegisters invocation was reworked due to some improper usage in
past. PR14099 also demonstrates it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166273 91177308-0d34-0410-b5e6-96231b3b80d8
test case on PowerPC caused by rounding errors when converting from a 64-bit
integer to a single-precision floating point. The reason for this are
double-rounding effects, since on PowerPC we have to convert to an
intermediate double-precision value first, which gets rounded to the
final single-precision result.
The patch fixes the problem by preparing the 64-bit integer so that the
first conversion step to double-precision will always be exact, and the
final rounding step will result in the correctly-rounded single-precision
result. The generated code sequence is equivalent to what GCC would generate.
When -enable-unsafe-fp-math is in effect, that extra effort is omitted
and we accept possible rounding errors (just like GCC does as well).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166178 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166168 91177308-0d34-0410-b5e6-96231b3b80d8
All callers of these functions really want the isPhysRegOrOverlapUsed()
functionality which also checks aliases. For historical reasons, targets
without register aliases were calling isPhysRegUsed() instead.
Change isPhysRegUsed() to also check aliases, and switch all
isPhysRegOrOverlapUsed() callers to isPhysRegUsed().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166117 91177308-0d34-0410-b5e6-96231b3b80d8
The previous MRI.isPhysRegUsed(YMM0) would also return true when the
function contains a call to a function that may clobber YMM0. That's
most of them.
Checking the use-def chains allows us to skip functions that don't
explicitly mention YMM registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166110 91177308-0d34-0410-b5e6-96231b3b80d8
- MBB address is only valid as an immediate value in Small & Static
code/relocation models. On other models, LEA is needed to load IP address of
the restore MBB.
- A minor fix of MBB in MC lowering is added as well to enable target
relocation flag being propagated into MC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166084 91177308-0d34-0410-b5e6-96231b3b80d8
- Add custom FP_TO_SINT on v8i16 (and v8i8 which is legalized as v8i16 due to
vector element-wise widening) to reduce DAG combiner and its overhead added
in X86 backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166036 91177308-0d34-0410-b5e6-96231b3b80d8
For the PowerPC 64-bit ELF Linux ABI, aggregates of size less than 8
bytes are to be passed in the low-order bits ("right-adjusted") of the
doubleword register or memory slot assigned to them. A previous patch
addressed this for aggregates passed in registers. However, small
aggregates passed in the overflow portion of the parameter save area are
still being passed left-adjusted.
The fix is made in PPCTargetLowering::LowerCall_Darwin_Or_64SVR4 on the
caller side, and in PPCTargetLowering::LowerFormalArguments_64SVR4 on
the callee side. The main fix on the callee side simply extends
existing logic for 1- and 2-byte objects to 1- through 7-byte objects,
and correcting a constant left over from 32-bit code. There is also a
fix to a bogus calculation of the offset to the following argument in
the parameter save area.
On the caller side, again a constant left over from 32-bit code is
fixed. Additionally, some code for 1, 2, and 4-byte objects is
duplicated to handle the 3, 5, 6, and 7-byte objects for SVR4 only. The
LowerCall_Darwin_Or_64SVR4 logic is getting fairly convoluted trying to
handle both ABIs, and I propose to separate this into two functions in a
future patch, at which time the duplication can be removed.
The patch adds a new test (structsinmem.ll) to demonstrate correct
passing of structures of all seven sizes. Eight dummy parameters are
used to force these structures to be in the overflow portion of the
parameter save area.
As a side effect, this corrects the case when aggregates passed in
registers are saved into the first eight doublewords of the parameter
save area: Previously they were stored left-justified, and now are
properly stored right-justified. This requires changing the expected
output of existing test case structsinregs.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166022 91177308-0d34-0410-b5e6-96231b3b80d8
Stack is formed improperly for long structures passed as byval arguments for
EABI mode.
If we took AAPCS reference, we can found the next statements:
A: "If the argument requires double-word alignment (8-byte), the NCRN (Next
Core Register Number) is rounded up to the next even register number." (5.5
Parameter Passing, Stage C, C.3).
B: "The alignment of an aggregate shall be the alignment of its most-aligned
component." (4.3 Composite Types, 4.3.1 Aggregates).
So if we have structure with doubles (9 double fields) and 3 Core unused
registers (r1, r2, r3): caller should use r2 and r3 registers only.
Currently r1,r2,r3 set is used, but it is invalid.
Callee VA routine should also use r2 and r3 regs only. All is ok here. This
behaviour is guessed by rounding up SP address with ADD+BFC operations.
Fix:
Main fix is in ARMTargetLowering::HandleByVal. If we detected AAPCS mode and
8 byte alignment, we waste odd registers then.
P.S.:
I also improved LDRB_POST_IMM regression test. Since ldrb instruction will
not generated by current regression test after this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166018 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
The attached is the fix to radar://11663049. The optimization can be outlined by following rules:
(select (x != c), e, c) -> select (x != c), e, x),
(select (x == c), c, e) -> select (x == c), x, e)
where the <c> is an integer constant.
The reason for this change is that : on x86, conditional-move-from-constant needs two instructions;
however, conditional-move-from-register need only one instruction.
While the LowerSELECT() sounds to be the most convenient place for this optimization, it turns out to be a bad place. The reason is that by replacing the constant <c> with a symbolic value, it obscure some instruction-combining opportunities which would otherwise be very easy to spot. For that reason, I have to postpone the change to last instruction-combining phase.
The change passes the test of "make check-all -C <build-root/test" and "make -C project/test-suite/SingleSource".
Original message since r165661:
My previous change has a bug: I negated the condition code of a CMOV, and go ahead creating a new CMOV using the *ORIGINAL* condition code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166017 91177308-0d34-0410-b5e6-96231b3b80d8
- Besides used in SjLj exception handling, __builtin_setjmp/__longjmp is also
used as a light-weight replacement of setjmp/longjmp which are used to
implementation continuation, user-level threading, and etc. The support added
in this patch ONLY addresses this usage and is NOT intended to support SjLj
exception handling as zero-cost DWARF exception handling is used by default
in X86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165989 91177308-0d34-0410-b5e6-96231b3b80d8
This patch replaces the EmitRawText by a EmitTCEntry class (specialized for
each Streamer) in PowerPC64 TOC entry creation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165940 91177308-0d34-0410-b5e6-96231b3b80d8
Convert the internal representation of the Attributes class into a pointer to an
opaque object that's uniqued by and stored in the LLVMContext object. The
Attributes class then becomes a thin wrapper around this opaque
object. Eventually, the internal representation will be expanded to include
attributes that represent code generation options, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165917 91177308-0d34-0410-b5e6-96231b3b80d8
X86 doesn't have i8 cmovs so isel would emit a branch. Emitting branches at this
level is often not a good idea because it's too late for many optimizations to
kick in. This solution doesn't add any extensions (truncs are free) and tries
to avoid introducing partial register stalls by filtering direct copyfromregs.
I'm seeing a ~10% speedup on reading a random .png file with libpng15 via
graphicsmagick on x86_64/westmere, but YMMV depending on the microarchitecture.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165868 91177308-0d34-0410-b5e6-96231b3b80d8
the interface between the front-end and the MC layer when parsing inline
assembly. Unfortunately, this is too deep into the parsing stack. Specifically,
we're unable to handle target-independent assembly (i.e., assembly directives,
labels, etc.). Note the MatchAndEmitInstruction() isn't the correct
abstraction either. I'll be exposing target-independent hooks shortly, so this
is really just a cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165858 91177308-0d34-0410-b5e6-96231b3b80d8
local frame causes problem.
For example:
void f(StructToPass s) {
g(&s, sizeof(s));
}
will cause problem with tail-call since part of s is passed via registers and
saved in f's local frame. When g tries to access s, part of s may be corrupted
since f's local frame is popped out before the tail-call.
The current fix is to disable tail-call if getVarArgsRegSaveSize is not 0 for
the caller. This is a conservative approach, if we can prove the address of
s or part of s is not taken and passed to g, it should be okay to perform
tail-call.
rdar://12442472
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165853 91177308-0d34-0410-b5e6-96231b3b80d8
isa<> et al. automatically infer when the cast is an upcast (including a
self-cast), so these are no longer necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165767 91177308-0d34-0410-b5e6-96231b3b80d8
For function calls on the 64-bit PowerPC SVR4 target, each parameter
is mapped to as many doublewords in the parameter save area as
necessary to hold the parameter. The first 13 non-varargs
floating-point values are passed in registers; any additional
floating-point parameters are passed in the parameter save area. A
single-precision floating-point parameter (32 bits) must be mapped to
the second (rightmost, low-order) word of its assigned doubleword
slot.
Currently LLVM violates this ABI requirement by mapping such a
parameter to the first (leftmost, high-order) word of its assigned
doubleword slot. This is internally self-consistent but will not
interoperate correctly with libraries compiled with an ABI-compliant
compiler.
This patch corrects the problem by adjusting the parameter addressing
on both sides of the calling convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165714 91177308-0d34-0410-b5e6-96231b3b80d8
Note: [D]M{T,F}CP2 is just a recommended encoding. Vendors often provide a
custom CP2 that interprets instructions differently and may wish to add their
own instructions that use this opcode. We should ensure that this is easy to
do. I will probably add a 'has custom CP{0-3}' subtarget flag to make this
easy: We want to avoid the GCC situation where every MIPS vendor makes a custom
fork that breaks every other MIPS CPU and so can't be merged upstream.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165711 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
The attached is the fix to radar://11663049. The optimization can be outlined by following rules:
(select (x != c), e, c) -> select (x != c), e, x),
(select (x == c), c, e) -> select (x == c), x, e)
where the <c> is an integer constant.
The reason for this change is that : on x86, conditional-move-from-constant needs two instructions;
however, conditional-move-from-register need only one instruction.
While the LowerSELECT() sounds to be the most convenient place for this optimization, it turns out to be a bad place. The reason is that by replacing the constant <c> with a symbolic value, it obscure some instruction-combining opportunities which would otherwise be very easy to spot. For that reason, I have to postpone the change to last instruction-combining phase.
The change passes the test of "make check-all -C <build-root/test" and "make -C project/test-suite/SingleSource".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165661 91177308-0d34-0410-b5e6-96231b3b80d8
the compiler makes use of GPR0. However, there are two flavors of
GPR0 defined by the target: the 32-bit GPR0 (R0) and the 64-bit GPR0
(X0). The spill/reload code makes use of R0 regardless of whether we
are generating 32- or 64-bit code.
This patch corrects the problem in the obvious manner, using X0 and
ADDI8 for 64-bit and R0 and ADDI for 32-bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165658 91177308-0d34-0410-b5e6-96231b3b80d8
the Altivec extensions were introduced. Its use is optional, and
allows the compiler to communicate to the operating system which
vector registers should be saved and restored during a context switch.
In practice, this information is ignored by the various operating
systems using the SVR4 ABI; the kernel saves and restores the entire
register state. Setting the VRSAVE register is no longer performed by
the AIX XL compilers, the IBM i compilers, or by GCC on Power Linux
systems. It seems best to avoid this logic within LLVM as well.
This patch avoids generating code to update and restore VRSAVE for the
PowerPC SVR4 ABIs (32- and 64-bit). The code remains in place for the
Darwin ABI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165656 91177308-0d34-0410-b5e6-96231b3b80d8
- Due to the current matching vector elements constraints in
ISD::FP_ROUND, rounding from v2f64 to v4f32 (after legalization from
v2f32) is scalarized. Add a customized v2f32 widening to convert it
into a target-specific X86ISD::VFPROUND to work around this
constraints.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165631 91177308-0d34-0410-b5e6-96231b3b80d8
- Due to the current matching vector elements constraints in ISD::FP_EXTEND,
rounding from v2f32 to v2f64 is scalarized. Add a customized v2f32 widening
to convert it into a target-specific X86ISD::VFPEXT to work around this
constraints. This patch also reverts a previous attempt to fix this issue by
recovering the scalarized ISD::FP_EXTEND pattern and thus significantly
reduces the overhead of supporting non-power-2 vector FP extend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165625 91177308-0d34-0410-b5e6-96231b3b80d8
SDNode for LDRB_POST_IMM is invalid: number of registers added to SDNode fewer
that described in .td.
7 ops is needed, but SDNode with only 6 is created.
In more details:
In ARMInstrInfo.td, in multiclass AI2_ldridx, in definition _POST_IMM, offset
operand is defined as am2offset_imm. am2offset_imm is complex parameter type,
and actually it consists from dummy register and imm itself. As I understood
trick with dummy reg was made for AsmParser. In ARMISelLowering.cpp, this dummy
register was not added to SDNode, and it cause crash in Peephole Optimizer pass.
The problem fixed by setting up additional dummy reg when emitting
LDRB_POST_IMM instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165617 91177308-0d34-0410-b5e6-96231b3b80d8
SchedulerDAGInstrs::buildSchedGraph ignores dependencies between FixedStack
objects and byval parameters. So loading byval parameters from stack may be
inserted *before* it will be stored, since these operations are treated as
independent.
Fix:
Currently ARMTargetLowering::LowerFormalArguments saves byval registers with
FixedStack MachinePointerInfo. To fix the problem we need to store byval
registers with MachinePointerInfo referenced to first the "byval" parameter.
Also commit adds two new fields to the InputArg structure: Function's argument
index and InputArg's part offset in bytes relative to the start position of
Function's argument. E.g.: If function's argument is 128 bit width and it was
splitted onto 32 bit regs, then we got 4 InputArg structs with same arg index,
but different offset values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165616 91177308-0d34-0410-b5e6-96231b3b80d8
Allows the new machine model to be used for NumMicroOps and OutputLatency.
Allows the HazardRecognizer to be disabled along with itineraries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165603 91177308-0d34-0410-b5e6-96231b3b80d8
This patch provides initial implementation of load address
macro instruction for Mips. We have implemented two kinds
of expansions with their variations depending on the size
of immediate operand:
1) load address with immediate value directly:
* la d,j => addiu d,$zero,j (for -32768 <= j <= 65535)
* la d,j => lui d,hi16(j)
ori d,d,lo16(j) (for any other 32 bit value of j)
2) load load address with register offset value
* la d,j(s) => addiu d,s,j (for -32768 <= j <= 65535)
* la d,j(s) => lui d,hi16(j) (for any other 32 bit value of j)
ori d,d,lo16(j)
addu d,d,s
This patch does not cover the case when the address is loaded
from the value of the label or function.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165561 91177308-0d34-0410-b5e6-96231b3b80d8
- Teach it about dadd[i] instructions and move pseudo-instruction
- Make it parse the register names correctly (for N32 / N64)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165506 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
Vector compare using altivec 'vcmpxxx' instructions have as third argument
a vector register instead of CR one, different from integer and float-point
compares. This leads to a failure in code generation, where 'SelectSETCC'
expects a DAG with a CR register and gets vector register instead.
This patch changes the behavior by just returning a DAG with the
vector compare instruction based on the type. The patch also adds a testcase
for all vector types llvm defines.
It also included a fix on signed 5-bits predicates printing, where
signed values were not handled correctly as signed (char are unsigned by
default for PowerPC). This generates 'vspltisw' (vector splat)
instruction with SIM out of range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165419 91177308-0d34-0410-b5e6-96231b3b80d8
into separate versions for the Darwin and 64-bit SVR4 ABIs. This will
facilitate doing more major surgery on the 64-bit SVR4 ABI in the near future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165336 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure functions located in user specified text sections (via the
section attribute) are located together with the default text sections.
Otherwise, for large object files, the relocations for call instructions
are more likely to be out of range. This becomes even more likely in the
presence of LTO.
rdar://12402636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165254 91177308-0d34-0410-b5e6-96231b3b80d8
a) frame setup instructions define the prologue
b) we shouldn't change our location mid-stream
Add a test to make sure that the stack adjustment stays within
the prologue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165250 91177308-0d34-0410-b5e6-96231b3b80d8
- Add 'HwEncoding' for X86 registers and call getEncodingValue() to
retrieve their encoding values.
- This's the first step to adopt new scheme. Furthur revising is onging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165241 91177308-0d34-0410-b5e6-96231b3b80d8
"Instruction 'foo' has no tokens" errors during llvm-tblgen
-gen-asm-matcher attempts. At this time, the added
tokens are "#comment" style rather than the actual mnemonic. This will
be revisited once the rest of the base asmparser bits get straightened
out for ppc64-elf-linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165237 91177308-0d34-0410-b5e6-96231b3b80d8
macro instruction (li) in the assembler.
We have identified three possible expansions depending on
the size of immediate operand:
1) for 0 ≤ j ≤ 65535.
li d,j =>
ori d,$zero,j
2) for −32768 ≤ j < 0.
li d,j =>
addiu d,$zero,j
3) for any other value of j that is representable as a 32-bit integer.
li d,j =>
lui d,hi16(j)
ori d,d,lo16(j)
All of the above have been implemented in ths patch.
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165199 91177308-0d34-0410-b5e6-96231b3b80d8
.set option
The patch implements following options
at - lets the assembler use the $at register for macros,
but generates warnings if the source program uses $at
noat - let source programs use $at without issuingwarnings.
noreorder - prevents the assembler from reordering machine
language instructions.
nomacro - causes the assembler to print a warning whenever
an assembler operation generates more than one
machine language instruction.
macro - lets the assembler generate multiple machine instructions
from a single assembler instruction
reorder - lets the assembler reorder machine language
instructions to improve performance
The above variants are parsed and their boolean values set or unset.
The code to actually use them will come later.
Following options are not implemented yet:
nomips16
nomicromips
move
nomove
Contributer: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165194 91177308-0d34-0410-b5e6-96231b3b80d8
in the Intel syntax.
The MC layer supports emitting in the Intel syntax, but this would require the
inline assembly MachineInstr to be lowered to an MCInst before emission. This
is potential future work, but for now emitting directly from the MachineInstr
suffices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165173 91177308-0d34-0410-b5e6-96231b3b80d8
for the number of bytes in a particular instruction
to using
const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode());
Desc.getSize()
This is necessary with the advent of 16 bit instructions with
mips16 and micromips. It is also puts Mips in compliance with
the other targets for getting instruction size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165171 91177308-0d34-0410-b5e6-96231b3b80d8
Corrects a problem whereby MCSchedModel was not being set up when
the CPU type was auto-detected.
Patch by Andy Zhang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165122 91177308-0d34-0410-b5e6-96231b3b80d8
Enable the pass by default for targets that request it, and change the
-enable-early-ifcvt to the opposite -disable-early-ifcvt.
There are still some x86 regressions when enabling early if-conversion
because of the missing machine models. Disable the pass for x86 until
machine models are added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165075 91177308-0d34-0410-b5e6-96231b3b80d8
X86DAGToDAGISel::PreprocessISelDAG(), isel is moving load inside
callseq_start / callseq_end so it can be folded into a call. This can
create a cycle in the DAG when the call is glued to a copytoreg. We
have been lucky this hasn't caused too many issues because the pre-ra
scheduler has special handling of call sequences. However, it has
caused a crash in a specific tailcall case.
rdar://12393897
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165072 91177308-0d34-0410-b5e6-96231b3b80d8
If the code is generated as assembler, this transformation does not occur assuming that it will occur later in the assembler.
This code was originally called from MipsAsmPrinter.cpp and we needed to check for OutStreamer.hasRawTextSupport(). This was not a good place for it and has been moved to MCTargetDesc/MipsMCCodeEmitter.cpp where both direct object and the assembler use it it automagically.
The test cases have been checked in for a number of weeks now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165067 91177308-0d34-0410-b5e6-96231b3b80d8
of operand is specific to MS-style inline assembly and should not be generated
when parsing normal assembly.
The purpose of the wildcard operands are to allow the AsmParser to match
multiple instructions (i.e., MCInsts) to a given ms-style asm statement. For
the time being the matcher just returns the first match. This patch only
implements wildcard matches for memory operands. Support for register
wildcards will be added in the near future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165057 91177308-0d34-0410-b5e6-96231b3b80d8
This adds 'elf' as a recognized target triple environment value and overrides the default generated object format on Windows platforms if that value is present. This patch also enables MCJIT tests on Windows using the new environment value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165030 91177308-0d34-0410-b5e6-96231b3b80d8
map constraints and MCInst operands to inline asm operands. This replaces the
getMCInstOperandNum() function.
The logic to determine the constraints are not in place, so we still default to
a register constraint (i.e., "r"). Also, we no longer build the MCInst but
rather return just the opcode to get the MCInstrDesc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164979 91177308-0d34-0410-b5e6-96231b3b80d8
The target backend can support data-in-code load commands even when
the assembler doesn't, or vice-versa. Allow targets to opt-in for
direct-to-object.
PR13973.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164974 91177308-0d34-0410-b5e6-96231b3b80d8
2. As part of this, added assembly format FEXT_RI16_SP_explicit_ins and
moved other lines for FEXT_RI16 formats to be in the right place in the code.
3. Added mayLoad and mayStore assignements for the load/store instructions added and for ones already there that did not have this assignment.
4. Another patch will deal with the problem of load/store byte/halfword to the stack. This is a particular Mips16 problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164811 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step towards ELF support; currently ARMFastISel hasn't
been used for ELF object files yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164759 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
If the offset is more than 24-bits, it won't fit in a scattered
relocation offset field, so we fall back to using a non-scattered
relocation.
rdar://12358909
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164724 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of embedding 'lock' into each mnemonic of atomic
instructions except 'xchg', we teach X86 assembly printer to output 'lock'
prefix similar to or consistent with code emitter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164659 91177308-0d34-0410-b5e6-96231b3b80d8
Provide interface in TargetLowering to set or get the minimum number of basic
blocks whereby jump tables are generated for switch statements rather than an
if sequence.
getMinimumJumpTableEntries() defaults to 4.
setMinimumJumpTableEntries() allows target configuration.
This patch changes the default for the Hexagon architecture to 5
as it improves performance on some benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164628 91177308-0d34-0410-b5e6-96231b3b80d8
When a BL/BLX references a symbol in the same translation unit that is
out of range, use an external relocation. The linker will use this to
generate a branch island rather than a direct reference, allowing the
relocation to resolve correctly.
rdar://12359919
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164615 91177308-0d34-0410-b5e6-96231b3b80d8
Even out-of-line jump tables can be in the code section, so mark them
as data-regions for those targets which support the directives.
rdar://12362871&12362974
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164571 91177308-0d34-0410-b5e6-96231b3b80d8
store when handling byval arguments. Thus preventing reordering of the store
with load with post-RA scheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164553 91177308-0d34-0410-b5e6-96231b3b80d8
As before with load instructions, oddities like "asr #32", "rrx" could
be printed incorrectly.
Patch by Chris Lidbury.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164456 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes load/store instructions to handle less common cases
like "asr #32", "rrx" properly throughout the MC layer.
Patch by Chris Lidbury.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164455 91177308-0d34-0410-b5e6-96231b3b80d8
- Rewirte most atomic instructions in templates for both better
maintenance and future extensions, such as HLE in TSX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164357 91177308-0d34-0410-b5e6-96231b3b80d8
The expression based expansion too often results in IR level optimizations
splitting the intermediate values into separate basic blocks, preventing
the formation of the VBSL instruction as the code author intended. In
particular, LICM would often hoist part of the computation out of a loop.
rdar://11011471
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164340 91177308-0d34-0410-b5e6-96231b3b80d8
- Rewrite/merge pseudo-atomic instruction emitters to address the
following issue:
* Reduce one unnecessary load in spin-loop
previously the spin-loop looks like
thisMBB:
newMBB:
ld t1 = [bitinstr.addr]
op t2 = t1, [bitinstr.val]
not t3 = t2 (if Invert)
mov EAX = t1
lcs dest = [bitinstr.addr], t3 [EAX is implicit]
bz newMBB
fallthrough -->nextMBB
the 'ld' at the beginning of newMBB should be lift out of the loop
as lcs (or CMPXCHG on x86) will load the current memory value into
EAX. This loop is refined as:
thisMBB:
EAX = LOAD [MI.addr]
mainMBB:
t1 = OP [MI.val], EAX
LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
JNE mainMBB
sinkMBB:
* Remove immopc as, so far, all pseudo-atomic instructions has
all-register form only, there is no immedidate operand.
* Remove unnecessary attributes/modifiers in pseudo-atomic instruction
td
* Fix issues in PR13458
- Add comprehensive tests on atomic ops on various data types.
NOTE: Some of them are turned off due to missing functionality.
- Revise tests due to the new spin-loop generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164281 91177308-0d34-0410-b5e6-96231b3b80d8
- Merge the processing of LOAD_ADD with other atomic load-arith
operations
- Separate the logic getting target constant for atomic-load-op and add
an optimization for atomic-load-add on i16 with negative value
- Optimize a minor case for atomic-fetch-add i16 with negative operand. Test
case is revised.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164243 91177308-0d34-0410-b5e6-96231b3b80d8