shuffle lowering for integer vectors and share it from v4i32, v8i16, and
v16i8 code paths.
Ironically, the SSE2 v16i8 code for this is now better than the SSSE3!
=] Will have to fix the SSSE3 code next to just using a single pshufb.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217240 91177308-0d34-0410-b5e6-96231b3b80d8
Patched by Sergey Dmitrouk.
This pass tries to make consecutive compares of values use same operands to
allow CSE pass to remove duplicated instructions. For this it analyzes
branches and adjusts comparisons with immediate values by converting:
GE -> GT
GT -> GE
LT -> LE
LE -> LT
and adjusting immediate values appropriately. It basically corrects two
immediate values towards each other to make them equal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217220 91177308-0d34-0410-b5e6-96231b3b80d8
Follow up to r217138, extending the logic to other NEON-immediate instructions.
As before, the instruction already performs the correct operation and we're
just using a different type for convenience, so we want a true nop-cast.
Patch by Asiri Rathnayake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217159 91177308-0d34-0410-b5e6-96231b3b80d8
We were materialising big-endian constants using DAG nodes with types different
from what was requested, followed by a bitcast. This is fine on little-endian
machines where bitcasting is a nop, but we need a slightly different
representation for big-endian. This adds a new set of NVCAST (natural-vector
cast) operations which are always nops.
Patch by Asiri Rathnayake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217138 91177308-0d34-0410-b5e6-96231b3b80d8
vzext patterns and insert-element patterns that for SSE4 have dedicated
instructions.
With this we can enable the experimental mode in a regression test that
happens to cover some of the past set of issues. You can see that the
new logic does significantly better here on the floating point cases.
A follow-up to this change and the previous ones will hoist the logic
into helpers so it can be shared across element type sizes as in this
particular case it generalizes cleanly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217136 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r216803, because it might have broken the buildbot.
The issue is tracked in PR20842.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217120 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds support for immediate and shift-left folding into logical
operations.
This fixes rdar://problem/18223183.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217118 91177308-0d34-0410-b5e6-96231b3b80d8
abilities of INSERTPS which are really powerful and come up in very
important contexts such as forming diagonal matrices, etc.
With this I ended up being able to remove the somewhat weird helper
I added for INSERTPS because we can collapse the entire state to a no-op
mask. Added a bunch of tests for inserting into a zero-ish vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217117 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix bug this exposed where when legalizing an immediate
operand, a v_mov_b32 would be created with a VSrc dest register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217108 91177308-0d34-0410-b5e6-96231b3b80d8
'insertps' patterns.
This replaces two shuffles with a single insertps in very common cases.
My next patch will extend this to leverage the zeroing capabilities of
insertps which will allow it to be used in a much wider set of cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217100 91177308-0d34-0410-b5e6-96231b3b80d8
This CL replaces the constant DarwinX86AsmBackend.PushInstrSize with a method
that lets the backend account for different sizes of "push %reg" instruction
sizes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217020 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies r216805 with a fix to a copy-past error, which resulted in an
incorrect register class.
Original commit message:
Select the correct register class for the various instructions that are
generated when combining instructions and constrain the registers to the
appropriate register class.
This fixes rdar://problem/18183707.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217019 91177308-0d34-0410-b5e6-96231b3b80d8
There is already target-dependent instruction selection support for Adds/Subs to
support compares and the intrinsics with overflow check. This takes advantage of
the existing infrastructure to also support Add/Sub, which allows the folding of
immediates, sign-/zero-extends, and shifts.
This fixes rdar://problem/18207316.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217007 91177308-0d34-0410-b5e6-96231b3b80d8
This uses the target-dependent selection code for shifts first, which allows us
to create better code for shifts with immediates and sign-/zero-extend folding.
Vector type are not handled yet and the code falls back to target-independent
instruction selection for these cases.
This fixes rdar://problem/17907920.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216985 91177308-0d34-0410-b5e6-96231b3b80d8
The only valid lowering of atomic stores in the X86 backend was mov from
register to memory. As a result, storing an immediate required a useless copy
of the immediate in a register. Now these can be compiled as a simple mov.
Similarily, adding/and-ing/or-ing/xor-ing an
immediate to an atomic location (but through an atomic_store/atomic_load,
not a fetch_whatever intrinsic) can now make use of an 'add $imm, x(%rip)'
instead of using a register. And the same applies to inc/dec.
This second point matches the first issue identified in
http://llvm.org/bugs/show_bug.cgi?id=17281
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216980 91177308-0d34-0410-b5e6-96231b3b80d8
If an fmul was introduced by lowering, it wouldn't be folded
into a multiply by a constant since the earlier combine would
have replaced the fmul with the fadd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216932 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix a small copy-paste bug in X86ISelLowering where Chain should
have been used in place of DAG.getEntryToken().
Fixes PR20828.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216929 91177308-0d34-0410-b5e6-96231b3b80d8
When I recommitted r208640 (in r216898) I added an exclusion for TargetConstant
offsets, as there is no guarantee that a backend can handle them on generic
ADDs (even if it generates them during address-mode matching) -- and,
specifically, applying this transformation directly with TargetConstants caused
a self-hosting failure on PPC64. Ignoring all TargetConstants, however, is less
than ideal. Instead, for non-opaque constants, we can convert them into regular
constants for use with the generated ADD (or SUB).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216908 91177308-0d34-0410-b5e6-96231b3b80d8
We have been using .init-array for most systems for quiet some time,
but tools like llc are still defaulting to .ctors because the old
option was never changed.
This patch makes llc default to .init-array and changes the option to
be -use-ctors.
Clang is not affected by this. It has its own fancier logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216905 91177308-0d34-0410-b5e6-96231b3b80d8
I reverted r208640 in r209747 because r208640 broke self-hosting on PPC64. The
underlying cause of the failure is that pre-inc loads with increments
represented by ISD::TargetConstants were being transformed into ISD:::ADDs with
ISD::TargetConstant operands. PPC doesn't have a pattern for those, and so they
were selected as invalid r+r adds.
This recommits r208640, rebased and with an exclusion for ISD::TargetConstant
increments. This behavior seems correct, although in the future we might want
to ask the target to split out the indexing that uses ISD::TargetConstants.
Unfortunately, I don't yet have small test case where the relevant invalid
'add' instruction is not itself dead (and thus eliminated by
DeadMachineInstructionElim -- sometimes bugpoint is too good at removing things)
Original commit message (by Adam Nemet):
Right now the load may not get DCE'd because of the side-effect of updating
the base pointer.
This can happen if we lower a read-modify-write of an illegal larger type
(e.g. i48) such that the modification only affects one of the subparts (the
lower i32 part but not the higher i16 part). See the testcase.
In order to spot the dead load we need to revisit it when SimplifyDemandedBits
decided that the value of the load is masked off. This is the
CommitTargetLoweringOpt piece.
I checked compile time with ARM64 by sending SPEC bitcode files through llc.
No measurable change.
Fixes <rdar://problem/16031651>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216898 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fixes a FIXME in MachineSinking. Instead of using the simple heuristics
in isPostDominatedBy, use the real MachinePostDominatorTree. The old
heuristics caused instructions to sink unnecessarily, and might create
register pressure.
Test Plan:
Added a NVPTX codegen test to verify that our change is in effect. It also
shows the unnecessary register pressure caused by over-sinking. Updated
affected tests in AArch64 and X86.
Reviewers: eliben, meheff, Jiangning
Reviewed By: Jiangning
Subscribers: jholewinski, aemerson, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D4814
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216862 91177308-0d34-0410-b5e6-96231b3b80d8
Select the correct register class for the various instructions that are
generated when combining instructions and constrain the registers to the
appropriate register class.
This fixes rdar://problem/18183707.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216805 91177308-0d34-0410-b5e6-96231b3b80d8
When sinking an instruction it might be moved past the original last use of one
of its operands. This last use has the kill flag set and the verifier will
obviously complain about this.
Before Machine Sinking (AArch64):
%vreg3<def> = ASRVXr %vreg1, %vreg2<kill>
%XZR<def> = SUBSXrs %vreg4, %vreg1<kill>, 160, %NZCV<imp-def>
...
After Machine Sinking:
%XZR<def> = SUBSXrs %vreg4, %vreg1<kill>, 160, %NZCV<imp-def>
...
%vreg3<def> = ASRVXr %vreg1, %vreg2<kill>
This fix clears all the kill flags in all instruction that use the same operands
as the instruction that is being sunk.
This fixes rdar://problem/18180996.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216803 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a variadic function body contains a musttail call, then we copy all
of the remaining register parameters into virtual registers in the
function prologue. We track the virtual registers through the function
body, and add them as additional registers to pass to the call. Because
this is all done in virtual registers, the register allocator usually
gives us good code. If the function does a call, however, it will have
to spill and reload all argument registers (ew).
Forwarding regparms on x86_32 is not implemented because most compilers
don't support varargs in 32-bit with regparms.
Reviewers: majnemer
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5060
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216780 91177308-0d34-0410-b5e6-96231b3b80d8
We've rejected these kinds of functions since r28405 in 2006 because
it's impossible to lower the return of a callee cleanup varargs
function. However there are lots of legal ways to leave such a function
without returning, such as aborting. Today we can leave a function with
a musttail call to another function with the correct prototype, and
everything works out.
I'm removing the verifier check declaring that a normal return from such
a function is UB.
Reviewed By: nlewycky
Differential Revision: http://reviews.llvm.org/D5059
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216779 91177308-0d34-0410-b5e6-96231b3b80d8
This patch checks for DAG patterns that are an add or a sub followed by a
compare on 16 and 8 bit inputs. Since AArch64 does not support those types
natively they are legalized into 32 bit values, which means that mask operations
are inserted into the DAG to emulate overflow behaviour. In many cases those
masks do not change the result of the processing and just introduce a dependent
operation, often in the middle of a hot loop.
This patch detects the relevent DAG patterns and then tests to see if the
transforms are equivalent with and without the mask, removing the mask if
possible. The exact mechanism of this patch was discusses in
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-July/074444.html
There is a reasonably good chance there are missed oppurtunities due to similiar
(but not identical) DAG patterns that could be funneled into this test, adding
them should be simple if we see test cases.
Tests included.
rdar://13754426
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216776 91177308-0d34-0410-b5e6-96231b3b80d8
The new solution is to not use this lowering if there are any dynamic
allocas in the current function. We know up front if there are dynamic
allocas, but we don't know if we'll need to create stack temporaries
with large alignment during lowering. Conservatively assume that we will
need such temporaries.
Reviewed By: hans
Differential Revision: http://reviews.llvm.org/D5128
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216775 91177308-0d34-0410-b5e6-96231b3b80d8
When we select a trunc instruction we don't emit any code if the type is already
i32 or smaller. This is because the instruction that uses the truncated value
will deal with it.
This behavior can incorrectly transfer a kill flag, which was meant for the
result of the truncate, onto the source register.
%2 = trunc i32 %1 to i16
... = ... %2 -> ... = ... vreg1 <kill>
... = ... %1 ... = ... vreg1
This commit fixes this by emitting a COPY instruction, so that the result and
source register are distinct virtual registers.
This fixes rdar://problem/18178188.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216750 91177308-0d34-0410-b5e6-96231b3b80d8