However with this fix it does now.
Basically the operand order for the x86 target specific node
is not the same as the instruction, but since the intrinsic need that
specific order at the instruction definition, just change the order
during legalization. Also, there were some wrong invertions of condition
codes, such as GE => LE, GT => LT, fix that too. Fix PR10907.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139528 91177308-0d34-0410-b5e6-96231b3b80d8
assert("not implemented for target shuffle node");
to:
assert(0 && "not implemented for target shuffle node");
This causes a test failure in CodeGen/X86/palignr.ll which has
been marked as XFAIL for the time being.
Test failure filed at PR10901.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139454 91177308-0d34-0410-b5e6-96231b3b80d8
in Nadav's r139285 and r139287 commits.
1) Rename vsel.ll to a more descriptive name
2) Change the order of BLEND operands to "Op1, Op2, Cond", this is
necessary because PBLENDVB is already used in different places with
this order, and it was being emitted in the wrong way for vselect
3) Add AVX patterns and tests for the same SSE41 instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139305 91177308-0d34-0410-b5e6-96231b3b80d8
The explanation about a 0 argument being materialized as xor is no
longer valid. Rematerialization will check if EFLAGS is live before
clobbering it.
The code produced by X86TargetLowering::EmitLoweredSelect does not
clobber EFLAGS.
This causes one less testb instruction to be generated in the cmov.ll
test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139057 91177308-0d34-0410-b5e6-96231b3b80d8
Added canClobberReachingPhysRegUse() to handle a particular pattern in
which a two-address instruction could be forced to interfere with
EFLAGS, causing a compare to be unnecessarilly cloned.
Fixes rdar://problem/5875261
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138924 91177308-0d34-0410-b5e6-96231b3b80d8
Emit a repeated sequence of bytes using .zero. This saves an enormous
amount of asm file space for certain programs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138864 91177308-0d34-0410-b5e6-96231b3b80d8
- Duplicate some store patterns to their AVX forms!
- Catched a bug while restricting the patterns subtarget, fix it
and update a testcase to check it properly
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138851 91177308-0d34-0410-b5e6-96231b3b80d8
SSE transition penalty. The pass is enabled through the "x86-use-vzeroupper"
llc command line option. This is only the first step (very naive and
conservative one) to sketch out the idea, but proper DFA is coming next
to allow smarter decisions. Comments and ideas now and in further commits
will be very appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138317 91177308-0d34-0410-b5e6-96231b3b80d8
match splats in the form (splat (scalar_to_vector (load ...))) whenever
the load can be folded. All the logic and instruction emission is
working but because of PR8156, there are no ways to match loads, cause
they can never be folded for splats. Thus, the tests are XFAILed, but
I've tested and exercised all the logic using a relaxed version for
checking the foldable loads, as if the bug was already fixed. This
should work out of the box once PR8156 gets fixed since MayFoldLoad will
work as expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137810 91177308-0d34-0410-b5e6-96231b3b80d8
vinsertf128 $1 + vpermilps $0, remove the old code that used to first
do the splat in a 128-bit vector and then insert it into a larger one.
This is better because the handling code gets simpler and also makes a
better room for the upcoming vbroadcast!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137807 91177308-0d34-0410-b5e6-96231b3b80d8
there is no support for native 256-bit shuffles, be more smart in some
cases, for example, when you can extract specific 128-bit parts and use
regular 128-bit shuffles for them. Example:
For this shuffle:
shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32>
<i32 1, i32 0, i32 7, i32 6>
This was expanded to:
vextractf128 $1, %ymm1, %xmm2
vpextrq $0, %xmm2, %rax
vmovd %rax, %xmm1
vpextrq $1, %xmm2, %rax
vmovd %rax, %xmm2
vpunpcklqdq %xmm1, %xmm2, %xmm1
vpextrq $0, %xmm0, %rax
vmovd %rax, %xmm2
vpextrq $1, %xmm0, %rax
vmovd %rax, %xmm0
vpunpcklqdq %xmm2, %xmm0, %xmm0
vinsertf128 $1, %xmm1, %ymm0, %ymm0
ret
Now we get:
vshufpd $1, %xmm0, %xmm0, %xmm0
vextractf128 $1, %ymm1, %xmm1
vshufpd $1, %xmm1, %xmm1, %xmm1
vinsertf128 $1, %xmm1, %ymm0, %ymm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137733 91177308-0d34-0410-b5e6-96231b3b80d8
vectors. It operates on 128-bit elements instead of regular scalar
types. Recognize shuffles that are suitable for VPERM2F128 and teach
the x86 legalizer how to handle them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137519 91177308-0d34-0410-b5e6-96231b3b80d8
inserts and extracts. This simple combine makes us generate only 1
instruction instead of 11 in the v8 case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137362 91177308-0d34-0410-b5e6-96231b3b80d8
1) check for the "v" version of movaps
2) add a couple of CHECK-NOT to guarantee the behavior
3) move to a more appropriate test file
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137361 91177308-0d34-0410-b5e6-96231b3b80d8
(for example, after integer operation), do not pack the registers into a YMM
before saving. Its better to save as two XMM registers.
Before:
vinsertf128 $1, %xmm3, %ymm0, %ymm3
vinsertf128 $0, %xmm1, %ymm3, %ymm1
vmovaps %ymm1, 416(%rsp)
After:
vmovaps %xmm3, 416+16(%rsp)
vmovaps %xmm1, 416(%rsp)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137308 91177308-0d34-0410-b5e6-96231b3b80d8
data in-register prior to saving to memory. When we reorder the data in memory
we prevent the need to save multiple scalars to memory, making a single regular
store.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137238 91177308-0d34-0410-b5e6-96231b3b80d8
def : Pat<(X86Movss VR128:$src1,
(bc_v4i32 (v2i64 (load addr:$src2)))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
This matches a MOVSS dag with a MOVLPS instruction. However, MOVSS will replace only the low 32 bits of the register, while the MOVLPS instruction will replace the low 64 bits. A testcase is added and illustrates the bug and also modified the one that was already present. Patch by Tanya Lattner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137227 91177308-0d34-0410-b5e6-96231b3b80d8
X86FloatingPoint keeps track of pending ST registers for an upcoming
inline asm instruction with fixed stack register constraints. It does
this by remembering which FP register holds the value that should appear
at a fixed stack position for the inline asm.
When that FP register is killed before the inline asm, make sure to
duplicate it to a scratch register, so the ST register still has a live
FP reference.
This could happen when the same FP register was copied to two ST
registers, or when a spill instruction is inserted between the ST copy
and the inline asm.
This fixes PR10602.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137050 91177308-0d34-0410-b5e6-96231b3b80d8
externally visable, create a local symbol to use in the CFE. If not, use the
function label itself.
Fixes PR10420.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136716 91177308-0d34-0410-b5e6-96231b3b80d8
avoid returning early for v8i32 types, which would only be valid for
vector with all zeros. Also split the handling of zeros and ones into separate
checking logic since they are handled differently. This fixes PR10547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136642 91177308-0d34-0410-b5e6-96231b3b80d8
This includes registers like EFLAGS and ST0-ST7. We don't check for
liveness issues in the verifier and scavenger because registers will
never be allocated from these classes.
While in SSA form, we do care about the liveness of unallocatable
unreserved registers. Liveness of EFLAGS and ST0 neds to be correct for
MachineDCE and MachineSinking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136541 91177308-0d34-0410-b5e6-96231b3b80d8
usage of the shuffle bitmask. Both work in 128-bit lanes without
crossing, but in the former the mask of the high part is the same
used by the low part while in the later both lanes have independent
masks. Handle this properly and and add support for vpermilpd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136200 91177308-0d34-0410-b5e6-96231b3b80d8
These copies would coalesce easily, but the resulting value would be
defined by a deleted instruction. Now we also remove the undefined value
number from the destination register.
This fixes PR10503.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136174 91177308-0d34-0410-b5e6-96231b3b80d8
On x86 we can't encode an immediate LHS of a sub directly. If the RHS comes from a XOR with a constant we can
fold the negation into the xor and add one to the immediate of the sub. Then we can turn the sub into an add,
which can be commuted and encoded efficiently.
This code is generated for __builtin_clz and friends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136167 91177308-0d34-0410-b5e6-96231b3b80d8
different from the previous 128-bit because they work in lanes.
Update a few comments and add testcases
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136157 91177308-0d34-0410-b5e6-96231b3b80d8
shuffle before inserting on a 256-bit vector.
- Add AVX versions of movd/movq instructions
- Introduce a few COPY patterns to match insert_subvector instructions.
This turns a trivial insert_subvector instruction into a register copy,
coalescing the xmm into a ymm and avoid emiting on more instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136002 91177308-0d34-0410-b5e6-96231b3b80d8
Addresses PR10466, although the crash from that PR only triggers in cases where DAGCombine misses optimizing a shuffle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135980 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes PR10463. A two-address instruction with an <undef> use
operand was incorrectly rewritten so the def and use no longer used the
same register, violating the tie constraint.
Fix this by always rewriting <undef> operands with the register a def
operand would use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135885 91177308-0d34-0410-b5e6-96231b3b80d8
and was actually very wrong, fix it and make it simpler. Also remove the
ConcatVectors function, which is unused now.
- Fix a introduction of useless nodes in r126664 and r126264. The
VUNPCKL* should never be introduced cause we don't want duplicate
nodes for 128 AVX and non-AVX modes, the actual instruction
difference only exists during isel, but not for target specific DAG
nodes. We only introduce V* target nodes when there is no 128-bit
version already there.
- Fix a fragile test and make it more useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135729 91177308-0d34-0410-b5e6-96231b3b80d8
- Add more bitcasts for v16i16
- Since 135661 and 135662 already added the splat logic,
just add one more splat test for v16i16
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135663 91177308-0d34-0410-b5e6-96231b3b80d8
instruction introduced in AVX, which can operate on 128 and 256-bit vectors.
It considers a 256-bit vector as two independent 128-bit lanes. It can permute
any 32 or 64 elements inside a lane, and restricts the second lane to
have the same permutation of the first one. With the improved splat support
introduced early today, adding codegen for this instruction enable more
efficient 256-bit code:
Instead of:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vextractf128 $1, %ymm0, %xmm1
shufps $1, %xmm1, %xmm1
movss %xmm1, 28(%rsp)
movss %xmm1, 24(%rsp)
movss %xmm1, 20(%rsp)
movss %xmm1, 16(%rsp)
vextractf128 $0, %ymm0, %xmm0
shufps $1, %xmm0, %xmm0
movss %xmm0, 12(%rsp)
movss %xmm0, 8(%rsp)
movss %xmm0, 4(%rsp)
movss %xmm0, (%rsp)
vmovaps (%rsp), %ymm0
We get:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vpermilps $85, %ymm0, %ymm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135662 91177308-0d34-0410-b5e6-96231b3b80d8
1) Make non-legal 256-bit loads to be promoted to v4i64. This lets us
canonize the loads and handle things the same way we use to handle
for 128-bit registers. Despite of what one of the removed comments
explained, the load promotion would not mess with VPERM, it's only a
matter of doing the appropriate bitcasts when this instructions comes
to be introduced. Also make LOAD v8i32 legal.
2) Doing 1) exposed two bugs:
- v4i64 was being promoted to itself for several opcodes (introduced
in r124447 by David Greene) causing endless recursion and the stack to
explode.
- there was no support for allOnes BUILD_VECTORs and ANDNP would fail to
match because it was generating early target constant pools during
lowering.
3) The testcases are already checked-in, doing 1) exposed the
bugs in the current testcases.
4) Tidy up code to be more clear and explicit about AVX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135313 91177308-0d34-0410-b5e6-96231b3b80d8
when determining validity of matching constraint. Allow i1
types access to the GR8 reg class for x86.
Fixes PR10352 and rdar://9777108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135180 91177308-0d34-0410-b5e6-96231b3b80d8
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134829 91177308-0d34-0410-b5e6-96231b3b80d8
With Lit (not bash) in a test, multiple redirects >%t might open(%t, "w") multiple. It can be avoided if latter redirect is >>%t.
It might work even if ">/dev/null" were used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134814 91177308-0d34-0410-b5e6-96231b3b80d8
Try to move spills as early as possible in their basic block. This can
help eliminate interferences by shortening the live range being
spilled.
This fixes PR10221.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134776 91177308-0d34-0410-b5e6-96231b3b80d8
RAGreedy::tryAssign will now evict interference from the preferred
register even when another register is free.
To support this, add the EvictionCost struct that counts how many hints
are broken by an eviction. We don't want to break one hint just to
satisfy another.
Rename canEvict to shouldEvict, and add the first bit of eviction policy
that doesn't depend on spill weights: Always make room in the preferred
register as long as the evictees can be split and aren't already
assigned to their preferred register.
Also make the CSR avoidance more accurate. When looking for a cheaper
register it is OK to use a new volatile register. Only CSR aliases that
have never been used before should be avoided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134735 91177308-0d34-0410-b5e6-96231b3b80d8
We have to do this in DAGBuilder instead of DAGCombiner, because the exact bit is lost after building.
struct foo { char x[24]; };
long bar(struct foo *a, struct foo *b) { return a-b; }
is now compiled into
movl 4(%esp), %eax
subl 8(%esp), %eax
sarl $3, %eax
imull $-1431655765, %eax, %eax
instead of
movl 4(%esp), %eax
subl 8(%esp), %eax
movl $715827883, %ecx
imull %ecx
movl %edx, %eax
shrl $31, %eax
sarl $2, %edx
addl %eax, %edx
movl %edx, %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134695 91177308-0d34-0410-b5e6-96231b3b80d8
It was testing a linear scan feature:
Test if linearscan is unfavoring registers for allocation to allow
more reuse of reloads from stack slots.
The greedy register allocator doesn't access any stack slots in this
function, so the linear scan feature was not being tested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134666 91177308-0d34-0410-b5e6-96231b3b80d8
Remat during spilling triggers dead code elimination. If a phi-def
becomes unused, that may also cause live ranges to split into separate
connected components.
This type of splitting is different from normal live range splitting. In
particular, there may not be a common original interval.
When the split range is its own original, make sure that the new
siblings are also their own originals. The range being split cannot be
used as an original since it doesn't cover the new siblings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134413 91177308-0d34-0410-b5e6-96231b3b80d8
outside the loop and reducible.
This more completely hides them from LSR, which isn't usually able to
do anything meaningful with non-affine expressions anyway, and this
consequently hides them from SCEVExpander, which is acutely unprepared
for non-affine expressions.
Replace test/CodeGen/X86/lsr-nonaffine.ll with a new test that tests
the new behavior.
This works around the bug in PR10117 / rdar://problem/9633149, and is
generally an improvement besides.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134268 91177308-0d34-0410-b5e6-96231b3b80d8
We would put the return value from long double functions in the wrong
register.
This fixes gcc.c-torture/execute/conversion.c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134205 91177308-0d34-0410-b5e6-96231b3b80d8
Drop the FpMov instructions, use plain COPY instead.
Drop the FpSET/GET instruction for accessing fixed stack positions.
Instead use normal COPY to/from ST registers around inline assembly, and
provide a single new FpPOP_RETVAL instruction that can access the return
value(s) from a call. This is still necessary since you cannot tell from
the CALL instruction alone if it returns anything on the FP stack. Teach
fast isel to use this.
This provides a much more robust way of handling fixed stack registers -
we can tolerate arbitrary FP stack instructions inserted around calls
and inline assembly. Live range splitting could sometimes break x87 code
by inserting spill code in unfortunate places.
As a bonus we handle floating point inline assembly correctly now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134018 91177308-0d34-0410-b5e6-96231b3b80d8
opening single quote with no closing single quote, and with {} quotes
"inside" of it. This broke some of our tools that scrape test cases.
Also, while here, make the test actually assert what the comment says it
asserts. This was essentially authored by Nick Lewycky, and merely typed
in by myself. Let me know if this is still missing the mark, but the
previous test only succeeded due to the improper quoting preventing
*anything* from matching the grep -- it had a '4(%...)' sequence in the
output!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133980 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix some of the tests that were actually testing wrong behavior -
An input operand in {st} is only popped by the inline asm when {st} is
also in the clobber list.
The original bug reports all had ~{st} clobbers as they should.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133916 91177308-0d34-0410-b5e6-96231b3b80d8
Take #2. Don't piggyback on the existing config.build_mode. Instead,
define a new lit feature for each build feature we need (currently
just "asserts"). Teach both autoconf'd and cmake'd Makefiles to define
this feature within test/lit.site.cfg. This doesn't require any lit
harness changes and should be more robust across build systems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133664 91177308-0d34-0410-b5e6-96231b3b80d8
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133503 91177308-0d34-0410-b5e6-96231b3b80d8
source vector type is to be split while the target vector is to be promoted.
(eg: <4 x i64> -> <4 x i8> )
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133424 91177308-0d34-0410-b5e6-96231b3b80d8
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133337 91177308-0d34-0410-b5e6-96231b3b80d8
range without a libcall to a new mulo<mode> libcall
that we'd have to create.
Finishes the rest of rdar://9090077 and rdar://9210061
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133318 91177308-0d34-0410-b5e6-96231b3b80d8
optimizations when emitting calls to the function; instead those calls may
use faster relocations which require the function to be immediately resolved
upon loading the dynamic object featuring the call. This is useful when it
is known that the function will be called frequently and pervasively and
therefore there is no merit in delaying binding of the function.
Currently only implemented for x86-64, where it turns into a call through
the global offset table.
Patch by Dan Gohman, who assures me that he's going to add LangRef documentation
for this once it's committed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133080 91177308-0d34-0410-b5e6-96231b3b80d8
converted to add x,x if x is a undef. add undef, undef does not guarantee
that the resulting low order bit is zero.
Fixes <rdar://problem/9453156> and <rdar://problem/9487392>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133022 91177308-0d34-0410-b5e6-96231b3b80d8
types (with power of two types such as 8,16,32 .. 512).
Fix a bug in the integer promotion of bitcast nodes. Enable integer expanding
only if the target of the conversion is an integer (when the type action is
scalarize).
Add handling to the legalization of vector load/store in cases where the saved
vector is integer-promoted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132985 91177308-0d34-0410-b5e6-96231b3b80d8
sharp all or nothing transition when one extra predecessor was added. Now
we still test first ones for merging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132974 91177308-0d34-0410-b5e6-96231b3b80d8
In particular, don't spill dirty registers only to satisfy a hint. It is
not worth it.
The attached test case provides an example where the fast allocator
would spill a register when other registers are available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132900 91177308-0d34-0410-b5e6-96231b3b80d8
The potential DAGCombine which enforces this more generally messes up some other very fragile patterns, so I'm leaving that alone, at least for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132809 91177308-0d34-0410-b5e6-96231b3b80d8
When local live range splitting creates a live range with the same
number of instructions as the old range, mark it as RS_Local. When such
a range is seen again, require that it be split in a way that reduces
the number of instructions. That guarantees we are making progress while
still being able to perform 3 -> 2+3 splits as required by PR10070.
This also means that the PrevSlot map is no longer needed. This was also
used to estimate new spill weights, but that is no longer necessary
after slotIndexes::insertMachineInstrInMaps() got the extra Late
insertion argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132697 91177308-0d34-0410-b5e6-96231b3b80d8
floating-point comparison, generate a mask of 0s or 1s, and generally
DTRT with NaNs. Only profitable when the user wants a materialized 0
or 1 at runtime. rdar://problem/5993888
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132404 91177308-0d34-0410-b5e6-96231b3b80d8
was saying that the matching superregister class of GR32_NOREX in GR64_NOREX_NOSP
is GR64_NOREX, which drops the NOSP constraint. This fixes PR10032.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132225 91177308-0d34-0410-b5e6-96231b3b80d8
According to PR2536, the old spiller had trouble with the IMPLICIT_DEF in this
code:
%reg1028<def> = MOV16rm %reg0, 1, %reg0, <ga:g_5>, Mem:LD(2,2) [g_5 + 0]
%reg1039<def> = IMPLICIT_DEF
%reg1038<def> = INSERT_SUBREG %reg1039, %reg1028, 2
%reg1025<def> = AND32ri %reg1038, 65534, %%EFLAGS<imp-def>
However, today we emit a zero-extending load instead:
%vreg10<def> = MOVZX32rm16 %noreg, 1, %noreg, <ga:@g_5>, %noreg; %mem:LD2[@g_5] GR32:%vreg10
%vreg0<def> = AND32ri %vreg10, 65534, %%EFLAGS<imp-def,dead>; %GR32:%vreg0,%vreg10
This makes the test pointless since it no longer creates the spiller hazard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132210 91177308-0d34-0410-b5e6-96231b3b80d8
crc32.[8|16|32] have been renamed to .crc32.32.[8|16|32] and
crc64.[8|16|32] have been renamed to .crc32.64.[8|64].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132163 91177308-0d34-0410-b5e6-96231b3b80d8
The practical effects here are that x86-64 fast-isel can now handle trunc from i8 to i1, and ARM fast-isel can handle many more constructs involving integers narrower than 32 bits (including loads, stores, and many integer casts).
rdar://9437928 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132099 91177308-0d34-0410-b5e6-96231b3b80d8
LTO friendly as we can now correctly merge files compiled with or without
-fasynchronous-unwind-tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132033 91177308-0d34-0410-b5e6-96231b3b80d8
non-zero.
- Teach X86 cmov optimization to eliminate the cmov from ctlz, cttz extension
when the source of X86ISD::BSR / X86ISD::BSF is proven to be non-zero.
rdar://9490949
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131948 91177308-0d34-0410-b5e6-96231b3b80d8