register destinations that are tied to source operands. The
TargetInstrDescr::findTiedToSrcOperand method silently fails for inline
assembly. The existing MachineInstr::isRegReDefinedByTwoAddr was very
close to doing what is needed, so this revision makes a few changes to
that method and also renames it to isRegTiedToUseOperand (for consistency
with the very similar isRegTiedToDefOperand and because it handles both
two-address instructions and inline assembly with tied registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68714 91177308-0d34-0410-b5e6-96231b3b80d8
in addition to ZERO_EXTEND and SIGN_EXTEND. Fix a bug in the
way it checked for live-out values, and simplify the way it
find users by using SDNode::use_iterator's (relatively) new
features. Also, make it slightly more permissive on targets
with free truncates.
In SelectionDAGBuild, avoid creating ANY_EXTEND nodes that are
larger than necessary. If the target's SwitchAmountTy has
enough bits, use it. This exposes the truncate to optimization
early, enabling more optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68670 91177308-0d34-0410-b5e6-96231b3b80d8
integer types, unless they are already strange. This prevents it from
turning the code produced by SROA into crazy libcalls and stuff that
the code generator can't handle. In the attached example, the result
was an i96 multiply that caused the x86 backend to assert.
Note that if TargetData had an idea of what the legal types are for
a target that this could be used to stop instcombine from introducing
i64 muls, as Scott wanted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68598 91177308-0d34-0410-b5e6-96231b3b80d8
with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce
SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG
instructions), and teach the DAGCombiner to take advantage of this on
targets which support it. This eliminates many redundant
zero-extension operations on x86-64.
This adds a new TargetLowering hook, isZExtFree. It's similar to
isTruncateFree, except it only applies to actual definitions, and not
no-op truncates which may not zero the high bits.
Also, this adds a new optimization to SimplifyDemandedBits: transform
operations like x+y into (zext (add (trunc x), (trunc y))) on targets
where all the casts are no-ops. In contexts where the high part of the
add is explicitly masked off, this allows the mask operation to be
eliminated. Fix the DAGCombiner to avoid undoing these transformations
to eliminate casts on targets where the casts are no-ops.
Also, this adds a new two-address lowering heuristic. Since
two-address lowering runs before coalescing, it helps to be able to
look through copies when deciding whether commuting and/or
three-address conversion are profitable.
Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle
the case that a clobber range extended both before and beyond an
existing live range. In that case, multiple live ranges need to be
added. This was exposed by the new subreg coalescing code.
Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the
spiller behavior it was looking for no longer occurrs with the new
instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
builds.
--- Reverse-merging (from foreign repository) r68552 into '.':
U test/CodeGen/X86/tls8.ll
U test/CodeGen/X86/tls10.ll
U test/CodeGen/X86/tls2.ll
U test/CodeGen/X86/tls6.ll
U lib/Target/X86/X86Instr64bit.td
U lib/Target/X86/X86InstrSSE.td
U lib/Target/X86/X86InstrInfo.td
U lib/Target/X86/X86RegisterInfo.cpp
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86CodeEmitter.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86InstrInfo.h
U lib/Target/X86/X86ISelDAGToDAG.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h
U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h
U lib/Target/X86/X86ISelLowering.h
U lib/Target/X86/X86InstrInfo.cpp
U lib/Target/X86/X86InstrBuilder.h
U lib/Target/X86/X86RegisterInfo.td
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68560 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces a small regression on the generated code
quality in the case we are just computing addresses, not
loading values.
Will work on it and on X86-64 support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68552 91177308-0d34-0410-b5e6-96231b3b80d8
instead of the place where it started to perform the string copy.
- PR3661
- Patch by Benjamin Kramer!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68443 91177308-0d34-0410-b5e6-96231b3b80d8
Constant, MDString and MDNode which can only be used by globals with a name
that starts with "llvm." or as arguments to a function with the same naming
restriction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68420 91177308-0d34-0410-b5e6-96231b3b80d8
e.g.
%reg1024<def> = MOV r1
%reg1025<def> = ADD %reg1024, %reg1026
r0 = MOV %reg1025
If it's not possible / profitable to commute ADD, then turning ADD into a LEA saves a copy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68065 91177308-0d34-0410-b5e6-96231b3b80d8
x * 40
=>
shlq $3, %rdi
leaq (%rdi,%rdi,4), %rax
This has the added benefit of allowing more multiply to be folded into addressing mode. e.g.
a * 24 + b
=>
leaq (%rdi,%rdi,2), %rax
leaq (%rsi,%rax,8), %rax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67917 91177308-0d34-0410-b5e6-96231b3b80d8
Also fixes SDISel so it *does not* force promote return value if the function is not marked signext / zeroext.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67701 91177308-0d34-0410-b5e6-96231b3b80d8
call, we should treat "i64 zext" as the start of a constant expr, but
"i64 0 zext" as an argument with an obsolete attribute on it (this form
is already tested by test/Assembler/2007-07-30-AutoUpgradeZextSext.ll).
Make the autoupgrade logic more discerning to avoid treating "i64 zext"
as an old-style attribute, causing us to reject a valid constant expr.
This fixes PR3876.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67682 91177308-0d34-0410-b5e6-96231b3b80d8
to/from integer types that are not intptr_t to convert to intptr_t
then do an integer conversion to the dest type. This exposes the
cast to the optimizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67638 91177308-0d34-0410-b5e6-96231b3b80d8
1. Make instcombine always canonicalize trunc x to i1 into an icmp(x&1). This
exposes the AND to other instcombine xforms and is more of what the code
generator expects.
2. Rewrite the remaining trunc pattern match to use 'match', which
simplifies it a lot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67635 91177308-0d34-0410-b5e6-96231b3b80d8
e.g. allocating for GR32, bh is not used, updating bl spill weight.
bl should get the same spill weight otherwise it will be choosen
as a spill candidate since spilling bh doesn't make ebx available.
This fix PR2866.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67574 91177308-0d34-0410-b5e6-96231b3b80d8
same as a normal i80 {low64, high16} rather
than its own {high64, low16}. A depressing number
of places know about this; I think I got them all.
Bitcode readers and writers convert back to the old
form to avoid breaking compatibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67562 91177308-0d34-0410-b5e6-96231b3b80d8
%RAX<def> = ...
%RAX<def> = SUBREG_TO_REG 0, %EAX:3<kill>, 3
The first def is defining RAX, not EAX so the top bits were not zero-extended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67511 91177308-0d34-0410-b5e6-96231b3b80d8
linkage: the value may be replaced with something
different at link time. (Frontends that want to
allow values to be loaded out of weak constants can
give their constants weak_odr linkage).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67407 91177308-0d34-0410-b5e6-96231b3b80d8
and expanding a bit convert (PR3711). In both cases, we extract the
valid part of the widen vector and then do the conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67175 91177308-0d34-0410-b5e6-96231b3b80d8
not safe in general because the immediate could be an arbitrary
value that does not fit in a 32-bit pcrel displacement.
Conservatively fall back to loading the value into a register
and calling through it.
We still do the optzn on X86-32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67142 91177308-0d34-0410-b5e6-96231b3b80d8
it is not APInt clean, but even when it is it needs to be evaluated carefully
to determine whether it is actually profitable.
This fixes a crash on PR3806
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67134 91177308-0d34-0410-b5e6-96231b3b80d8
to see if this is producing the expected code or not, I'm
not sure what the test was intended to check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67099 91177308-0d34-0410-b5e6-96231b3b80d8
size by the array amount as an i32 value instead of promoting from
i32 to i64 then doing the multiply. Not doing this broke wrap-around
assumptions that the optimizers (validly) made. The ultimate real
fix for this is to introduce i64 version of alloca and remove mallocinst.
This fixes PR3829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67093 91177308-0d34-0410-b5e6-96231b3b80d8
vector shuffle mask. Forced the mask to be built using i32. Note: this will
be irrelevant once vector_shuffle no longer takes a build vector for the
shuffle mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67076 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix fabs, fneg for f32 and f64.
- Use BuildVectorSDNode.isConstantSplat, now that the functionality exists
- Continue to improve i64 constant lowering. Lower certain special constants
to the constant pool when they correspond to SPU's shufb instruction's
special mask values. This avoids the overhead of performing a shuffle on a
zero-filled vector just to get the special constant when the memory load
suffices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67067 91177308-0d34-0410-b5e6-96231b3b80d8
U test/CodeGen/X86/2009-03-13-PHIElimBug.ll
D test/CodeGen/X86/2009-03-16-PHIElimInLPad.ll
U lib/CodeGen/PHIElimination.cpp
r67049 was causing this failure:
Running /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/CodeGen/X86/dg.exp ...
FAIL: /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/CodeGen/X86/2009-03-13-PHIElimBug.ll for PR3784
Failed with exit(1) at line 1
while running: llvm-as < /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/CodeGen/X86/2009-03-13-PHIElimBug.ll | llc -march=x86 | /usr/bin/grep -A 2 {call f} | /usr/bin/grep movl
child process exited abnormally
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67051 91177308-0d34-0410-b5e6-96231b3b80d8
how invokes are set up. The fix could be disturbed by
register copies coming after the EH_LABEL, and also didn't
behave quite right when it was the invoke result that
was used in a phi node. Also (see new testcase) fix
another phi elimination bug while there: register copies
in the landing pad need to come after the EH_LABEL, because
that's where execution branches to when unwinding. If they
come before the EH_LABEL then they will never be executed...
Also tweak the original testcase so it doesn't use a no-longer
existing counter.
The accumulated phi elimination changes fix two of seven Ada
testsuite failures that turned up after landing pad critical
edge splitting was turned off. So there's probably more to come.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67049 91177308-0d34-0410-b5e6-96231b3b80d8
Incorporate Tilmann's 128-bit operation patch. Evidently, it gets the
llvm-gcc bootstrap a bit further along.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67048 91177308-0d34-0410-b5e6-96231b3b80d8
shift constant expressions, and add support for folding vector
shift constant expressions. This fixes PR3802.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67010 91177308-0d34-0410-b5e6-96231b3b80d8
ptrtoint and inttoptr in X86FastISel. These casts aren't always
handled in the generic FastISel code because X86 sometimes needs
custom code to do truncation and zero-extension.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66988 91177308-0d34-0410-b5e6-96231b3b80d8
by inserting explicit zero extensions where necessary. Included
is a testcase where SelectionDAG produces a virtual register
holding an i1 value which FastISel previously mistakenly assumed
to be zero-extended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66941 91177308-0d34-0410-b5e6-96231b3b80d8
1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants.
2. MachineConstantPool alignment field is also a log2 value.
3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values.
4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries.
5. Asm printer uses expensive data structure multimap to track constant pool entries by sections.
6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic.
Solutions:
1. ConstantPoolSDNode alignment field is changed to keep non-log2 value.
2. MachineConstantPool alignment field is also changed to keep non-log2 value.
3. Functions that create ConstantPool nodes are passing in non-log2 alignments.
4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT.
5. Asm printer uses cheaper data structure to group constant pool entries.
6. Asm printer compute entry offsets after grouping is done.
7. Change JIT code to compute entry offsets on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
for i32/i64 expressions (we could also do i16 on cpus where
i16 lea is fast, but I didn't add this). On the example, we now
generate:
_test:
movl 4(%esp), %eax
cmpl $42, (%eax)
setl %al
movzbl %al, %eax
leal 4(%eax,%eax,8), %eax
ret
instead of:
_test:
movl 4(%esp), %eax
cmpl $41, (%eax)
movl $4, %ecx
movl $13, %eax
cmovg %ecx, %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66869 91177308-0d34-0410-b5e6-96231b3b80d8
operands can't both be fully folded at the same time. For example,
in the included testcase, a global variable is being added with
an add of two values. The global variable wants RIP-relative
addressing, so it can't share the address with another base
register, but it's still possible to fold the initial add.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66865 91177308-0d34-0410-b5e6-96231b3b80d8
in the Ada testcase. Reverting this only covers up
the real problem, which is a nasty conceptual difficulty
in the phi elimination pass: when eliminating phi nodes
in landing pads, the register copies need to come before
the invoke, not at the end of the basic block which is
too late... See PR3784.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66826 91177308-0d34-0410-b5e6-96231b3b80d8
related transformations out of target-specific dag combine into the
ARM backend. These were added by Evan in r37685 with no testcases
and only seems to help ARM (e.g. test/CodeGen/ARM/select_xform.ll).
Add some simple X86-specific (for now) DAG combines that turn things
like cond ? 8 : 0 -> (zext(cond) << 3). This happens frequently
with the recently added cp constant select optimization, but is a
very general xform. For example, we now compile the second example
in const-select.ll to:
_test:
movsd LCPI2_0, %xmm0
ucomisd 8(%esp), %xmm0
seta %al
movzbl %al, %eax
movl 4(%esp), %ecx
movsbl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 4(%esp), %eax
leal 4(%eax), %ecx
movsd LCPI2_0, %xmm0
ucomisd 8(%esp), %xmm0
cmovbe %eax, %ecx
movsbl (%ecx), %eax
ret
This passes multisource and dejagnu.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66779 91177308-0d34-0410-b5e6-96231b3b80d8
alignment of the generated constant pool entry to the
desired alignment of a type. If we don't do this, we end up
trying to do movsd from 4-byte alignment memory. This fixes
450.soplex and 456.hmmer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66641 91177308-0d34-0410-b5e6-96231b3b80d8
1. Use the same value# to represent unknown values being merged into sub-registers.
2. When coalescer commute an instruction and the destination is a physical register, update its sub-registers by merging in the extended ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66610 91177308-0d34-0410-b5e6-96231b3b80d8
to obtain debug info about them.
Introduce helpers to access debug info for global variables. Also introduce a
helper that works for both local and global variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66541 91177308-0d34-0410-b5e6-96231b3b80d8
the same say the "test" instruction does in overflow cases,
so eliminating the test is only safe when those bits aren't
needed, as is the case for COND_E and COND_NE, or if it
can be proven that no overflow will occur. For now, just
restrict the optimization to COND_E and COND_NE and don't
do any overflow analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66318 91177308-0d34-0410-b5e6-96231b3b80d8
to find a tiny mouse hole to squeeze through, it struck
me that globals without a name can be considered internal
since they can't be referenced from outside the current
module. This patch makes GlobalOpt give them internal
linkage. Also done for aliases even though they always
have names, since in my opinion anonymous aliases should
be allowed for consistency with global variables and
functions. So if that happens one day, this code is ready!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66267 91177308-0d34-0410-b5e6-96231b3b80d8
with multiple chain operands. This can occur when the scheduler
has added chain operands to a node that already has a chain
operand, in order to handle physical register dependencies.
This fixes an llvm-gcc bootstrap failure on x86-64 introduced
in r66058.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66240 91177308-0d34-0410-b5e6-96231b3b80d8
If non constant local GV named A is used by a constant local GV named B (e.g. llvm.dbg.variable) and B is not used by anyone else then eliminate A as well as B.
In other words, debug info should not interfere in removal of unused GV.
--This life, and those below, will be ignored--
M test/Transforms/GlobalOpt/2009-03-03-dbg.ll
M lib/Transforms/IPO/GlobalOpt.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66167 91177308-0d34-0410-b5e6-96231b3b80d8
so it changed it into a 31 via the TLO.ShrinkDemandedConstant() call. Then it
would go through the DAG combiner again. This time it had a value of 31, which
was turned into a -1 by TLI.SimplifyDemandedBits(). This would ping pong
forever.
Teach the TLO.ShrinkDemandedConstant() call not to lower a value if the demanded
value is an XOR of all ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65985 91177308-0d34-0410-b5e6-96231b3b80d8
use, check also for the case where it has two uses,
the other being a llvm.dbg.declare. This is needed so
debug info doesn't affect codegen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65970 91177308-0d34-0410-b5e6-96231b3b80d8
stripped .bc file, it didn't make any attempt to try to reuse anonymous types.
This causes an amazing type explosion due to types getting duplicated everywhere
they are referenced and other problems.
This also caused correctness issues, because opaque types are unique for each time
they are uttered in the file. This means that stripping a .bc file could produce
a .ll file that could not be assembled (e.g. 2009-02-28-StripOpaqueName.ll).
This patch fixes both of these issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65738 91177308-0d34-0410-b5e6-96231b3b80d8
friends should work. This fixes 2006-11-30-Pubnames.cpp and friends on darwin
with the new -mmacosx-version-min change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65564 91177308-0d34-0410-b5e6-96231b3b80d8
copied field by LLVM field if the record has a variable
sized field in it. The problem is that the LLVM field
will not completely cover the variable sized gcc field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65463 91177308-0d34-0410-b5e6-96231b3b80d8
to more accurately describe what it does. Expand its doxygen comment
to describe what the backedge-taken count is and how it differs
from the actual iteration count of the loop. Adjust names and
comments in associated code accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65382 91177308-0d34-0410-b5e6-96231b3b80d8
a DBG_LABEL or not. We want to fall back to the original way of emitting debug
info when we're in -O0/-fast mode.
- Add plumbing in to pass the "Fast" flag to places that need it.
- XFAIL DebugInfo/deaddebuglabel.ll. This is finding 11 labels instead of 8. I
need to investigate still.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65367 91177308-0d34-0410-b5e6-96231b3b80d8
ashr instcombine to help expose this code. And apply the fix to
SelectionDAG's copy of this code too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65364 91177308-0d34-0410-b5e6-96231b3b80d8
trip counts that use signed comparisons. It's not obviously the best
approach for preserving trip count information, and at any rate there
isn't anything in the tree right now that makes use of that, so for
now always using zero-extensions is preferable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65347 91177308-0d34-0410-b5e6-96231b3b80d8
instruction. The class also consolidates the code for detecting constant
splats that's shared across PowerPC and the CellSPU backends (and might be
useful for other backends.) Also introduces SelectionDAG::getBUID_VECTOR() for
generating new BUILD_VECTOR nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65296 91177308-0d34-0410-b5e6-96231b3b80d8
Now we're using one gross, but quite robust hack :) (previous ones
did not work, for example, when ext_weak symbol was used deep inside
constant expression in the initializer).
The proper fix of this problem will require some quite huge asmprinter
changes and that's why was postponed. This fixes PR3629 by the way :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65230 91177308-0d34-0410-b5e6-96231b3b80d8
as legality. Make load sinking and gep sinking more careful: we only
do it when it won't pessimize loads from the stack. This has the added
benefit of not producing code that is unanalyzable to SROA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65209 91177308-0d34-0410-b5e6-96231b3b80d8
addresses, part 1. This fixes an obvious logic bug. Previously if the only
in-loop use is a PHI, it would return AllUsesAreAddresses as true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65178 91177308-0d34-0410-b5e6-96231b3b80d8
reduction of address calculations down to basic pointer arithmetic.
This is currently off by default, as it needs a few other features
before it becomes generally useful. And even when enabled, full
strength reduction is only performed when it doesn't increase
register pressure, and when several other conditions are true.
This also factors out a bunch of exisiting LSR code out of
StrengthReduceStridedIVUsers into separate functions, and tidies
up IV insertion. This actually decreases register pressure even
in non-superhero mode. The change in iv-users-in-other-loops.ll
is an example of this; there are two more adds because there are
two fewer leas, and there is less spilling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65108 91177308-0d34-0410-b5e6-96231b3b80d8
trip count value when the original loop iteration condition is
signed and the canonical induction variable won't undergo signed
overflow. This isn't required for correctness; it just preserves
more information about original loop iteration values.
Add a getTruncateOrSignExtend method to ScalarEvolution,
following getTruncateOrZeroExtend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64918 91177308-0d34-0410-b5e6-96231b3b80d8
are multiple IV's in a loop, some of them may under go signed
or unsigned wrapping even if the IV that's used in the loop
exit condition doesn't. Restrict sign-extension-elimination
and zero-extension-elimination to only those that operate on
the original loop-controlling IV.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64866 91177308-0d34-0410-b5e6-96231b3b80d8
eliminate all the extensions and all but the one required truncate
from the testcase, but the or/and/shift stuff still isn't zapped.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64809 91177308-0d34-0410-b5e6-96231b3b80d8
Enhance instcombine to use the preferred field of
GetOrEnforceKnownAlignment in more cases, so that regular IR operations are
optimized in the same way that the intrinsics currently are.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64623 91177308-0d34-0410-b5e6-96231b3b80d8
alias can be morphed into the target. Implement this
transform, and fix a crash in the existing transform at
the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64583 91177308-0d34-0410-b5e6-96231b3b80d8
- Test for signed and unsigned wrapping conditions, instead of just
testing for non-negative induction ranges.
- Handle loops with GT comparisons, in addition to LT comparisons.
- Support more cases of induction variables that don't start at 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64532 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure the SCC pass manager initializes any contained
function pass managers. Without this, simplify-libcalls
would add nocapture attributes when run on its own, but
not when run as part of -std-compile-opts or similar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64443 91177308-0d34-0410-b5e6-96231b3b80d8
couldn't ever be the return of call instruction. However, it's quite possible
that said local allocation is itself the return of a function call. That's
what malloc and calloc are for, actually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64442 91177308-0d34-0410-b5e6-96231b3b80d8
addrec in a different loop to check the value being added to
the accumulated Start value, not the Start value before it has
the new value added to it. This prevents LSR from going crazy
on the included testcase. Dale, please review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64440 91177308-0d34-0410-b5e6-96231b3b80d8
after sorting by stride value. This prevents it from missing
IV reuse opportunities in a host-sensitive manner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64415 91177308-0d34-0410-b5e6-96231b3b80d8
loop induction on LP64 targets. When the induction variable is
used in addressing, IndVars now is usually able to inserst a
64-bit induction variable and eliminates the sign-extending cast.
This is also useful for code using C "short" types for
induction variables on targets with 32-bit addressing.
Inserting a wider induction variable is easy; the tricky part is
determining when trunc(sext(i)) expressions are no-ops. This
requires range analysis of the loop trip count. A common case is
when the original loop iteration starts at 0 and exits when the
induction variable is signed-less-than a fixed value; this case
is now handled.
This replaces IndVarSimplify's OptimizeCanonicalIVType. It was
doing the same optimization, but it was limited to loops with
constant trip counts, because it was running after the loop
rewrite, and the information about the original induction
variable is lost by that point.
Rename ScalarEvolution's executesAtLeastOnce to
isLoopGuardedByCond, generalize it to be able to test for
ICMP_NE conditions, and move it to be a public function so that
IndVars can use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64407 91177308-0d34-0410-b5e6-96231b3b80d8
in inline asm as signed (what gcc does). Add partial support
for x86-specific "e" and "Z" constraints, with appropriate
signedness for printing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64400 91177308-0d34-0410-b5e6-96231b3b80d8
calls with the tail marker when inlining them through an invoke. Patch,
testcase, and perfect analysis by Jay Foad!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64364 91177308-0d34-0410-b5e6-96231b3b80d8
unless they actually have data successors, and likewise for nodes
with no data successors unless they actually have data precessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64327 91177308-0d34-0410-b5e6-96231b3b80d8
It was transforming (x&y)==y to (x&y)!=0 in the case where
y is variable and known to have at most one bit set (e.g. z&1).
This is not correct; the expressions are not equivalent when y==0.
I believe this patch salvages what can be salvaged, including
all the cases in bt.ll. Dan, please review.
Fixes gcc.c-torture/execute/20040709-[12].c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64314 91177308-0d34-0410-b5e6-96231b3b80d8
function pass managers. Without this, simplify-libcalls
would add nocapture attributes when run on its own, but
not when run as part of -std-compile-opts or similar.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64300 91177308-0d34-0410-b5e6-96231b3b80d8
accessed at least once as a vector. This prevents it from
compiling the example in not-a-vector into:
define double @test(double %A, double %B) {
%tmp4 = insertelement <7 x double> undef, double %A, i32 0
%tmp = insertelement <7 x double> %tmp4, double %B, i32 4
%tmp2 = extractelement <7 x double> %tmp, i32 4
ret double %tmp2
}
instead, producing the integer code. Producing vectors when they
aren't otherwise in the program is dangerous because a lot of other
code treats them carefully and doesn't want to break them down.
OTOH, many things want to break down tasty i448's.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63638 91177308-0d34-0410-b5e6-96231b3b80d8
in any old order. Since analyzing a node analyzes its
operands also, this can mean that when we pop a node
off the list of nodes to be analyzed, it may already
have been analyzed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63632 91177308-0d34-0410-b5e6-96231b3b80d8
reliable way to do this with the current dejagnu infrastructure.
If someone can figure out how to fix these tests so that they test
what they are intended to test without spuriously failing on any
popular platforms, they are invited to reinstate them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63592 91177308-0d34-0410-b5e6-96231b3b80d8
With the new world order, it can handle cases where the first
store into the alloca is an element of the vector, instead of
requiring the first analyzed store to have the vector type
itself. This allows us to un-xfail
test/CodeGen/X86/vec_ins_extract.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63590 91177308-0d34-0410-b5e6-96231b3b80d8
--This line, and those below, will be ignaored--
A test/CodeGen/X86/nosse-error1.ll
A test/CodeGen/X86/nosse-error2.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63496 91177308-0d34-0410-b5e6-96231b3b80d8
crashes or wrong code with codegen of large integers:
eliminate the legacy getIntegerVTBitMask and
getIntegerVTSignBit methods, which returned their
value as a uint64_t, so couldn't handle huge types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63494 91177308-0d34-0410-b5e6-96231b3b80d8
turn icmp eq a+x, b+x into icmp eq a, b if a+x or b+x has other uses. This
may have been increasing register pressure leading to the bzip2 slowdown.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63487 91177308-0d34-0410-b5e6-96231b3b80d8
improvements to the EvaluateInDifferentType code. This code works
by just inserted a bunch of new code and then seeing if it is
useful. Instcombine is not allowed to do this: it can only insert
new code if it is useful, and only when it is converging to a more
canonical fixed point. Now that we iterate when DCE makes progress,
this causes an infinite loop when the code ends up not being used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63483 91177308-0d34-0410-b5e6-96231b3b80d8
returned by getShiftAmountTy may be too small
to hold shift values (it is an i8 on x86-32).
Before and during type legalization, use a large
but legal type for shift amounts: getPointerTy;
afterwards use getShiftAmountTy, fixing up any
shift amounts with a big type during operation
legalization. Thanks to Dan for writing the
original patch (which I shamelessly pillaged).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63482 91177308-0d34-0410-b5e6-96231b3b80d8
simplifydemandedbits to simplify instructions with *multiple
uses* in contexts where it can get away with it. This allows
it to simplify the code in multi-use-or.ll into a single 'add
double'.
This change is particularly interesting because it will cover
up for some common codegen bugs with large integers created due
to the recent SROA patch. When working on fixing those bugs,
this should be disabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63481 91177308-0d34-0410-b5e6-96231b3b80d8
not doing so prevents it from properly iterating and prevents it
from deleting the entire body of dce-iterate.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63476 91177308-0d34-0410-b5e6-96231b3b80d8
be able to handle *ANY* alloca that is poked by loads and stores of
bitcasts and GEPs with constant offsets. Before the code had a number
of annoying limitations and caused it to miss cases such as storing into
holes in structs and complex casts (as in bitfield-sroa) where we had
unions of bitfields etc. This also handles a number of important cases
that are exposed due to the ABI lowering stuff we do to pass stuff by
value.
One case that is pretty great is that we compile
2006-11-07-InvalidArrayPromote.ll into:
define i32 @func(<4 x float> %v0, <4 x float> %v1) nounwind {
%tmp10 = call <4 x i32> @llvm.x86.sse2.cvttps2dq(<4 x float> %v1)
%tmp105 = bitcast <4 x i32> %tmp10 to i128
%tmp1056 = zext i128 %tmp105 to i256
%tmp.upgrd.43 = lshr i256 %tmp1056, 96
%tmp.upgrd.44 = trunc i256 %tmp.upgrd.43 to i32
ret i32 %tmp.upgrd.44
}
which turns into:
_func:
subl $28, %esp
cvttps2dq %xmm1, %xmm0
movaps %xmm0, (%esp)
movl 12(%esp), %eax
addl $28, %esp
ret
Which is pretty good code all things considering :).
One effect of this is that SROA will start generating arbitrary bitwidth
integers that are a multiple of 8 bits. In the case above, we got a
256 bit integer, but the codegen guys assure me that it can handle the
simple and/or/shift/zext stuff that we're doing on these operations.
This addresses rdar://6532315
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63469 91177308-0d34-0410-b5e6-96231b3b80d8
information output. However, many target specific tool chains prefer to encode
only one compile unit in an object file. In this situation, the LLVM code
generator will include debugging information entities in the compile unit
that is marked as main compile unit. The code generator accepts maximum one main
compile unit per module. If a module does not contain any main compile unit
then the code generator will emit multiple compile units in the output object
file.
[Part 1]
Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit.
Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here.
Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit.
[Part 2]
Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs.
---
This is Part 1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63400 91177308-0d34-0410-b5e6-96231b3b80d8
the LowerPartSet(). It didn't handle the situation correctly when
the low, high argument values are in reverse order (low > high)
with 'Val' type is i32 (a corner case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63386 91177308-0d34-0410-b5e6-96231b3b80d8
dagcombines that help it match in several more cases. Add
several more cases to test/CodeGen/X86/bt.ll. This doesn't
yet include matching for BT with an immediate operand, it
just covers more register+register cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63266 91177308-0d34-0410-b5e6-96231b3b80d8
- DW_AT_bit_size is only suitable for bitfields.
- Encode source location info for derived types.
- Source location and type size info is not useful for subroutine_type (info is included in respective DISubprogram) and array_type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63077 91177308-0d34-0410-b5e6-96231b3b80d8
checking logic. Rather than make the checking more
complicated, I've tweaked some logic to make things
conform to how the checking thought things ought to
be, since this results in a simpler "mental model".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63048 91177308-0d34-0410-b5e6-96231b3b80d8
- Rename fcmp.ll test to fcmp32.ll, start adding new double tests to fcmp64.ll
- Fix select_bits.ll test
- Capitulate to the DAGCombiner and move i64 constant loads to instruction
selection (SPUISelDAGtoDAG.cpp).
<rant>DAGCombiner will insert all kinds of 64-bit optimizations after
operation legalization occurs and now we have to do most of the work that
instruction selection should be doing twice (once to determine if v2i64
build_vector can be handled by SelectCode(), which then runs all of the
predicates a second time to select the necessary instructions.) But,
CellSPU is a good citizen.</rant>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62990 91177308-0d34-0410-b5e6-96231b3b80d8
%reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
%reg1029<def> = MOV8rr %reg1028
%reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
insert => %reg1030<def> = MOV8rr %reg1028
%reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
In this case, it might not be possible to coalesce the second MOV8rr
instruction if the first one is coalesced. So it would be profitable to
commute it:
%reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
%reg1029<def> = MOV8rr %reg1028
%reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
insert => %reg1030<def> = MOV8rr %reg1029
%reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62954 91177308-0d34-0410-b5e6-96231b3b80d8
handling the case in Transforms/InstCombine/cast-store-gep.ll, which
is a heavily reduced testcase from Clang on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62904 91177308-0d34-0410-b5e6-96231b3b80d8
Simplify x+0 to x in unsafe-fp-math mode. This avoids a bunch of
redundant work in many cases, because in unsafe-fp-math mode,
ISD::FADD with a constant is considered free to negate, so the
DAGCombiner often negates x+0 to -0-x thinking it's free, when
in reality the end result is -x, which is more expensive than x.
Also, combine x*0 to 0.
This fixes PR3374.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62789 91177308-0d34-0410-b5e6-96231b3b80d8
analyses could be run without the caches properly sorted. This
can fix all sorts of weirdness. Many thanks to Bill for coming
up with the 'issorted' verification idea.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62757 91177308-0d34-0410-b5e6-96231b3b80d8
ASCII IR; loading and storing these can change the
bits of NaNs on some hosts. Remove or add warnings
at a few other places using host floating point;
this is a bad thing to do in general.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62712 91177308-0d34-0410-b5e6-96231b3b80d8
special cases after producing the new reduced-width load, because the
new load already has the needed adjustments built into it. This fixes
several bugs due to the special cases, including PR3317.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62692 91177308-0d34-0410-b5e6-96231b3b80d8
we want to clear %ah to zero before a division, just use a
zero-extending mov to %al. This fixes PR3366.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62691 91177308-0d34-0410-b5e6-96231b3b80d8
this test into FrontendC to ensure that llvm-gcc
is available; assemble using "llvm-gcc -xassembler"
rather than "as".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62683 91177308-0d34-0410-b5e6-96231b3b80d8