accumulator instead of its sub-registers, $hi and $lo.
We need this change to prevent a mflo following a mtlo from reading an
unpredictable/undefined value, as shown in the following example:
mult $6, $7 // result of $6 * $7 is written to $lo and $hi.
mflo $2 // read lower 32-bit result from $lo.
mtlo $4 // write to $lo. the content of $hi becomes unpredictable.
mfhi $3 // read higher 32-bit from $hi, which has an unpredictable value.
I don't have a test case for this change that reliably reproduces the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192119 91177308-0d34-0410-b5e6-96231b3b80d8
When MC was first added, targets could use hasRawTextSupport to keep features
working before they were added to the MC interface.
The design goal of MC is to provide an uniform api for printing assembly and
object files. Short of relaxations and other corner cases, a object file is
just another representation of the assembly.
It was never the intention that targets would keep doing things like
if (hasRawTextSupport())
Set flags in one way.
else
Set flags in another way.
When they do that they create two code paths and the object file is no longer
just another representation of the assembly. This also then requires testing
with llc -filetype=obj, which is extremelly brittle.
This patch removes some of these hacks by replacing them with smaller ones.
The ARM flag setting is trivial, so I just moved it to the constructor. For
Mips, the patch adds two temporary hack directives that allow the assembly
to represent the same things as the object file was already able to.
The hope is that the mips developers will replace the hack directives with
the same ones that gas uses and drop the -print-hack-directives flag.
I will also try to implement a target streamer interface, so that we can
move this out of the common code.
In summary, for any new work, two rules of the thumb are
* Don't use "llc -filetype=obj" in tests.
* Don't add calls to hasRawTextSupport.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192035 91177308-0d34-0410-b5e6-96231b3b80d8
This patch handles LLVM standalone assembler (llvm-mc) ELF flag setting based on input file
directive processing.
Mips assembly requires processing inline directives that directly and
indirectly affect the output ELF header flags. This patch handles one
".abicalls".
To process these directives we are following the model the code generator
uses by storing state in a container as we go through processing and when
we detect the end of input file processing, AsmParser is notified and we
update the ELF header flags through a MipsELFStreamer method with a call from
MCTargetAsmParser::emitEndOfAsmFile(MCStreamer &OutStreamer).
This patch will allow other targets the same functionality.
Jack
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191982 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds Direct Object Emission support for I8 instructions: andi.b, bmnzi.b, bmzi.b, bseli.b, nori.b, ori.b, shf.{b,h,w} and xori.b.
Patch by Matheus Almeida
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191688 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds Direct Object Emission support for 2R instructions: nloc.{b,h,w}, nlzc.{b,h,w}, pcnt.{b,w,d}.
Patch by Matheus Almeida
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191685 91177308-0d34-0410-b5e6-96231b3b80d8
of loops.
Previously, two consecutive calls to function "func" would result in the
following sequence of instructions:
1. load $16, %got(func)($gp) // load address of lazy-binding stub.
2. move $25, $16
3. jalr $25 // jump to lazy-binding stub.
4. nop
5. move $25, $16
6. jalr $25 // jump to lazy-binding stub again.
With this patch, the second call directly jumps to func's address, bypassing
the lazy-binding resolution routine:
1. load $25, %got(func)($gp) // load address of lazy-binding stub.
2. jalr $25 // jump to lazy-binding stub.
3. nop
4. load $25, %got(func)($gp) // load resolved address of func.
5. jalr $25 // directly jump to func.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191591 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is lowered into an equivalent INSERT_VECTOR_ELT which is
further lowered into a sequence of insert.w's on MIPS32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191521 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is lowered into an equivalent BUILD_VECTOR which is further
lowered into a sequence of insert.w's on MIPS32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191519 91177308-0d34-0410-b5e6-96231b3b80d8
For v4f32 and v2f64, INSERT_VECTOR_ELT is matched by a pseudo-insn which is
later expanded to appropriate insve.[wd] insns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191515 91177308-0d34-0410-b5e6-96231b3b80d8
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191514 91177308-0d34-0410-b5e6-96231b3b80d8
This file contains notes about the instruction selection for MSA. For example,
it notes that ilvl.d is cannot be selected because ilvev.d covers the same
cases and is selected instead of ilvl.d.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191507 91177308-0d34-0410-b5e6-96231b3b80d8
lowerMSABinaryIntr, lowerMSABinaryImmIntr, lowerMSABranchIntr,
and lowerMSAUnaryIntr were trivially small functions. Inlined them into
their callers.
lowerMSASplat now takes its callers SDLoc instead of making a new one.
No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191503 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first set of instructions with a ".b" modifier thus we need to add the required code to disassemble a MSA128B register class.
Patch by Matheus Almeida
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191415 91177308-0d34-0410-b5e6-96231b3b80d8
In more detail, this patch adds the ability to parse, encode and decode MSA registers ($w0-$w31). The format of 2RF instructions (MipsMSAInstrFormat.td) was updated so that we could attach a test case to this patch i.e., the test case parses, encodes and decodes 2 MSA instructions. Following patches will add the remainder of the instructions.
Note that DecodeMSA128BRegisterClass is missing from MipsDisassembler.td because it's not yet required at this stage and having it would cause a compiler warning (unused function).
Patch by Matheus Almeida
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191412 91177308-0d34-0410-b5e6-96231b3b80d8
Most constant BUILD_VECTOR's are matched using ComplexPatterns which cover
bitcasted as well as normal vectors. However, it doesn't seem to be possible to
match ldi.[bhwd] in a type-agnostic manner (e.g. to support the widest range of
immediates, it should be possible to use ldi.b to load v2i64) using TableGen so
ldi.[bhwd] is matched using custom code in MipsSEISelDAGToDAG.cpp
This made the majority of the constant splat BUILD_VECTOR lowering redundant.
The only transformation remaining for constant splats is when an (up-to) 32-bit
constant splat is possible but the value does not fit into a 10-bit signed
integer. In this case, the BUILD_VECTOR is transformed into a bitcasted
BUILD_VECTOR so that fill.[bhw] can be used to splat the vector from a GPR32
register (which is initialized using the usual lui/addui sequence).
There are no additional tests since this is a re-implementation of previous
functionality. The change is intended to make it easier to implement some of
the upcoming instruction selection patches since they can rely on existing
support for BUILD_VECTOR's in the DAGCombiner.
compare_float.ll changed slightly because a BITCAST is no longer
introduced during legalization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191299 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS SelectionDAG changes:
* Added VCEQ, VCL[ET]_[SU] nodes to represent vector comparisons that produce a bitmask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191286 91177308-0d34-0410-b5e6-96231b3b80d8
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191199 91177308-0d34-0410-b5e6-96231b3b80d8
An unrelated change crept in because 'svn revert' isn't recursive by default.
The unrelated changes have been reverted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191193 91177308-0d34-0410-b5e6-96231b3b80d8
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191191 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, the DAGISel function WalkChainUsers was spotting that it
had entered already-selected territory by whether a node was a
MachineNode (amongst other things). Since it's fairly common practice
to insert MachineNodes during ISelLowering, this was not the correct
check.
Looking around, it seems that other nodes get their NodeId set to -1
upon selection, so this makes sure the same thing happens to all
MachineNodes and uses that characteristic to determine whether we
should stop looking for a loop during selection.
This should fix PR15840.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191165 91177308-0d34-0410-b5e6-96231b3b80d8
1) make sure that the first two instructions of the sequence cannot
separate from each other. The linker requires that they be sequential.
If they get separated, it can still work but it will not work in all
cases because the first of the instructions mostly involves the hi part
of the pc relative offset and that part changes slowly. You would have
to be at the right boundary for this to matter.
2) make sure that this sequence begins on a longword boundary.
There appears to be a bug in binutils which makes some of these calculations
get messed up if the instruction sequence does not begin on a longword
boundary. This is being investigated with the appropriate binutils folks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190966 91177308-0d34-0410-b5e6-96231b3b80d8
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190598 91177308-0d34-0410-b5e6-96231b3b80d8
stores, make sure the load or store that accesses the higher half does not have
an alignment that is larger than the offset from the original address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190318 91177308-0d34-0410-b5e6-96231b3b80d8
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190290 91177308-0d34-0410-b5e6-96231b3b80d8
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190235 91177308-0d34-0410-b5e6-96231b3b80d8
don't exist in libc. This is really not the right way to solve this problem;
but it's not clear to me at this time exactly what is the right way.
If we create stubs here, they will cause link errors because these functions
do not exist in libc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189727 91177308-0d34-0410-b5e6-96231b3b80d8
has hard float, when you compile the mips32 code you have to make sure
that it knows to compile any mips32 routines as hard float. I need to clean
up the way mips16 hard float is specified but I need to first think through
all the details. Mips16 always has a form of soft float, the difference being
whether the underlying hardware has floating point. So it's not really
necessary to pass the -soft-float to llvm since soft-float is always true
for mips16 by virtue of the fact that it will not register floating point
registers. By using this fact, I can simplify the way this is all handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189690 91177308-0d34-0410-b5e6-96231b3b80d8
These intrinsics are legalized to V(ALL|ANY)_(NON)?ZERO nodes,
are matched as SN?Z_[BHWDV]_PSEUDO pseudo's, and emitted as
a branch/mov sequence to evaluate to 0 or 1.
Note: The resulting code is sub-optimal since it doesnt seem to be possible
to feed the result of an intrinsic directly into a brcond. At the moment
it uses (SETCC (VALL_ZERO $ws), 0, SETEQ) and similar which unnecessarily
evaluates the boolean twice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189478 91177308-0d34-0410-b5e6-96231b3b80d8
The MSA control registers have been added as reserved registers,
and are only used via ISD::Copy(To|From)Reg. The intrinsics are lowered
into these nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189468 91177308-0d34-0410-b5e6-96231b3b80d8
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted
Resubmit this patch. The target triple needs to be added to the test so that
clang does not tell the backend the wrong target when the host is BSD. There
is a clang bug in here somewhere that I need to track down. At Mips this
has been filed internally as a bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189186 91177308-0d34-0410-b5e6-96231b3b80d8
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189161 91177308-0d34-0410-b5e6-96231b3b80d8
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189097 91177308-0d34-0410-b5e6-96231b3b80d8
I accidentally changed the encoding of the MSA registers to zero instead of 0
to 31. This change restores the encoding the registers had prior to r188893.
This didn't show up in the existing tests because direct-object emission isn't
implemented yet for MSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188896 91177308-0d34-0410-b5e6-96231b3b80d8
size of floating point registers is 64-bit.
Test case will be added when support for mfhc1 and mthc1 is added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188847 91177308-0d34-0410-b5e6-96231b3b80d8
point registers. We will need this register class later when we add
definitions for instructions mfhc1 and mthc1. Also, remove sub-register indices
sub_fpeven and sub_fpodd and use sub_lo and sub_hi instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188842 91177308-0d34-0410-b5e6-96231b3b80d8
load/store instructions defined. Previously, we were defining load/store
instructions for each pointer size (32 and 64-bit), but now we need just one
definition.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188830 91177308-0d34-0410-b5e6-96231b3b80d8
functions be compiled as mips32, without having to add attributes. This
is useful in certain situations where you don't want to have to edit the
function attributes in the source. For now it's only an option used for
the compiler developers when debugging the mips16 port.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188826 91177308-0d34-0410-b5e6-96231b3b80d8
This regards how mips16 is viewed. It's not really a target type but
there has always been a target for it in the td files. It's more properly
-mcpu=mips32 -mattr=+mips16 . This is how clang treats it but we have
always had the -mcpu=mips16 which I probably should delete now but it will
require updating all the .ll test cases for mips16. In this case it changed
how we decide if we have a count bits instruction and whether instruction
lowering should then expand ctlz. Now that we have dual mode compilation,
-mattr=+mips16 really just indicates the inital processor mode that
we are compiling for. (It is also possible to have -mcpu=64 -mattr=+mips16
but as far as I know, nobody has even built such a processor, though there
is an architecture manual for this).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188586 91177308-0d34-0410-b5e6-96231b3b80d8
* msa SubtargetFeature
* registers
* ld.[bhwd], and st.[bhwd] instructions
Does not correctly prohibit use of both 32-bit FPU registers and MSA together.
Patch by Daniel Sanders
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188313 91177308-0d34-0410-b5e6-96231b3b80d8
is actually an instrinsic that will not occur in libc. This list here
is not exhaustive but fixes the one places in test-suite where this occurs.
I have filed a bug against myself to research the full list and add them
to the array of such cases. In the future, actual stub generation will occur
in a later phase and we won't need this code because we will know at that time
during the compilation that in fact no helper function was even needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188149 91177308-0d34-0410-b5e6-96231b3b80d8
instruction move. Just affects static relocation. -static works fine now
with mips16 for the most part.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188143 91177308-0d34-0410-b5e6-96231b3b80d8
I need to go through all the runtime routine list and see if there
are any more I need to add for mips16 floating point. Prototypes must
be correct or else I don't know to add a helper function call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188106 91177308-0d34-0410-b5e6-96231b3b80d8
unnecessary jalr InstAliases in Mips64InstrInfo.td and add the code to print
jalr InstAliases in MipsInstPrinter::printAlias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187821 91177308-0d34-0410-b5e6-96231b3b80d8
Without explicit dependencies, both per-file action and in-CommonTableGen action could run in parallel.
It races to emit *.inc files simultaneously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187780 91177308-0d34-0410-b5e6-96231b3b80d8
helper functions. This can be optimized out later when the remaining
parts of the helper function work is moved into the Mips16HardFloat pass.
For now it forces us to use the 32 bit save/restore instructions instead
of the 16 bit ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187712 91177308-0d34-0410-b5e6-96231b3b80d8
remove lines that are setting DecoderNamespace for pseudo atomic instructions.
No intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187632 91177308-0d34-0410-b5e6-96231b3b80d8
This is actually an LLVM bug in the way it generates signatures for these
when soft float is enabled. For example, floor ends up having the signature
of int64(int64). The signature part is not the same as where the actual
parameter types are recorded, and those ARE of course int64(int64) when
soft float is enabled. (Yes, Mips16 hard float uses soft float but with
different runtime rounes but then has to interoperate with Mips32 using
normal floating point). This logic will eventually be moved to the
Mips16HardFloat pass so it's not worth sorting out these issues in LLVM
since nobody but Mips16 cares about these signatures, as far as I know,
and even I won't eventually either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187613 91177308-0d34-0410-b5e6-96231b3b80d8
1) They should never be inlined.
2) A naming inconsistency with gcc mips16
3) Stubs should not have the global attribute
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187555 91177308-0d34-0410-b5e6-96231b3b80d8