reduction of address calculations down to basic pointer arithmetic.
This is currently off by default, as it needs a few other features
before it becomes generally useful. And even when enabled, full
strength reduction is only performed when it doesn't increase
register pressure, and when several other conditions are true.
This also factors out a bunch of exisiting LSR code out of
StrengthReduceStridedIVUsers into separate functions, and tidies
up IV insertion. This actually decreases register pressure even
in non-superhero mode. The change in iv-users-in-other-loops.ll
is an example of this; there are two more adds because there are
two fewer leas, and there is less spilling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65108 91177308-0d34-0410-b5e6-96231b3b80d8
Enhance instcombine to use the preferred field of
GetOrEnforceKnownAlignment in more cases, so that regular IR operations are
optimized in the same way that the intrinsics currently are.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64623 91177308-0d34-0410-b5e6-96231b3b80d8
addrec in a different loop to check the value being added to
the accumulated Start value, not the Start value before it has
the new value added to it. This prevents LSR from going crazy
on the included testcase. Dale, please review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64440 91177308-0d34-0410-b5e6-96231b3b80d8
after sorting by stride value. This prevents it from missing
IV reuse opportunities in a host-sensitive manner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64415 91177308-0d34-0410-b5e6-96231b3b80d8
in inline asm as signed (what gcc does). Add partial support
for x86-specific "e" and "Z" constraints, with appropriate
signedness for printing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64400 91177308-0d34-0410-b5e6-96231b3b80d8
unless they actually have data successors, and likewise for nodes
with no data successors unless they actually have data precessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64327 91177308-0d34-0410-b5e6-96231b3b80d8
It was transforming (x&y)==y to (x&y)!=0 in the case where
y is variable and known to have at most one bit set (e.g. z&1).
This is not correct; the expressions are not equivalent when y==0.
I believe this patch salvages what can be salvaged, including
all the cases in bt.ll. Dan, please review.
Fixes gcc.c-torture/execute/20040709-[12].c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64314 91177308-0d34-0410-b5e6-96231b3b80d8
in any old order. Since analyzing a node analyzes its
operands also, this can mean that when we pop a node
off the list of nodes to be analyzed, it may already
have been analyzed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63632 91177308-0d34-0410-b5e6-96231b3b80d8
With the new world order, it can handle cases where the first
store into the alloca is an element of the vector, instead of
requiring the first analyzed store to have the vector type
itself. This allows us to un-xfail
test/CodeGen/X86/vec_ins_extract.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63590 91177308-0d34-0410-b5e6-96231b3b80d8
--This line, and those below, will be ignaored--
A test/CodeGen/X86/nosse-error1.ll
A test/CodeGen/X86/nosse-error2.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63496 91177308-0d34-0410-b5e6-96231b3b80d8
crashes or wrong code with codegen of large integers:
eliminate the legacy getIntegerVTBitMask and
getIntegerVTSignBit methods, which returned their
value as a uint64_t, so couldn't handle huge types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63494 91177308-0d34-0410-b5e6-96231b3b80d8
returned by getShiftAmountTy may be too small
to hold shift values (it is an i8 on x86-32).
Before and during type legalization, use a large
but legal type for shift amounts: getPointerTy;
afterwards use getShiftAmountTy, fixing up any
shift amounts with a big type during operation
legalization. Thanks to Dan for writing the
original patch (which I shamelessly pillaged).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63482 91177308-0d34-0410-b5e6-96231b3b80d8
dagcombines that help it match in several more cases. Add
several more cases to test/CodeGen/X86/bt.ll. This doesn't
yet include matching for BT with an immediate operand, it
just covers more register+register cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63266 91177308-0d34-0410-b5e6-96231b3b80d8
checking logic. Rather than make the checking more
complicated, I've tweaked some logic to make things
conform to how the checking thought things ought to
be, since this results in a simpler "mental model".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63048 91177308-0d34-0410-b5e6-96231b3b80d8
- Rename fcmp.ll test to fcmp32.ll, start adding new double tests to fcmp64.ll
- Fix select_bits.ll test
- Capitulate to the DAGCombiner and move i64 constant loads to instruction
selection (SPUISelDAGtoDAG.cpp).
<rant>DAGCombiner will insert all kinds of 64-bit optimizations after
operation legalization occurs and now we have to do most of the work that
instruction selection should be doing twice (once to determine if v2i64
build_vector can be handled by SelectCode(), which then runs all of the
predicates a second time to select the necessary instructions.) But,
CellSPU is a good citizen.</rant>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62990 91177308-0d34-0410-b5e6-96231b3b80d8
%reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
%reg1029<def> = MOV8rr %reg1028
%reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
insert => %reg1030<def> = MOV8rr %reg1028
%reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
In this case, it might not be possible to coalesce the second MOV8rr
instruction if the first one is coalesced. So it would be profitable to
commute it:
%reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
%reg1029<def> = MOV8rr %reg1028
%reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
insert => %reg1030<def> = MOV8rr %reg1029
%reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62954 91177308-0d34-0410-b5e6-96231b3b80d8
Simplify x+0 to x in unsafe-fp-math mode. This avoids a bunch of
redundant work in many cases, because in unsafe-fp-math mode,
ISD::FADD with a constant is considered free to negate, so the
DAGCombiner often negates x+0 to -0-x thinking it's free, when
in reality the end result is -x, which is more expensive than x.
Also, combine x*0 to 0.
This fixes PR3374.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62789 91177308-0d34-0410-b5e6-96231b3b80d8
special cases after producing the new reduced-width load, because the
new load already has the needed adjustments built into it. This fixes
several bugs due to the special cases, including PR3317.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62692 91177308-0d34-0410-b5e6-96231b3b80d8
we want to clear %ah to zero before a division, just use a
zero-extending mov to %al. This fixes PR3366.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62691 91177308-0d34-0410-b5e6-96231b3b80d8
this test into FrontendC to ensure that llvm-gcc
is available; assemble using "llvm-gcc -xassembler"
rather than "as".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62683 91177308-0d34-0410-b5e6-96231b3b80d8
- Ensure that (operation) legalization emits proper FDIV libcall when needed.
- Fix various bugs encountered during llvm-spu-gcc build, along with various
cleanups.
- Start supporting double precision comparisons for remaining libgcc2 build.
Discovered interesting DAGCombiner feature, which is currently solved via
custom lowering (64-bit constants are not legal on CellSPU, but DAGCombiner
insists on inserting one anyway.)
- Update README.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62664 91177308-0d34-0410-b5e6-96231b3b80d8
as its comment says, even in the case where it will be generating
extending loads. This fixes PR3216.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62557 91177308-0d34-0410-b5e6-96231b3b80d8
uses are added to the From node while it is processing From's
use list, because of automatic local CSE. The fix is to avoid
visiting any new uses.
Fix a few places in the DAGCombiner that assumed that after
a RAUW call, the From node has no users and may be deleted.
This fixes PR3018.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62533 91177308-0d34-0410-b5e6-96231b3b80d8
optimize it to a SINT_TO_FP when the sign bit is known zero. X86 isel should perform the optimization itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62504 91177308-0d34-0410-b5e6-96231b3b80d8
simple %prcontext which doesn't find what it's looking for
if the scheduler has rearranged the instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62363 91177308-0d34-0410-b5e6-96231b3b80d8
sequences in SPUDAGToDAGISel.cpp and SPU64InstrInfo.td, killing custom
DAG node types as needed.
- i64 mul is now a legal instruction, but emits an instruction sequence
that stretches tblgen and the imagination, as well as violating laws of
several small countries and most southern US states (just kidding, but
looking at a function with 80+ parameters is really weird and just plain
wrong.)
- Update tests as needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62254 91177308-0d34-0410-b5e6-96231b3b80d8
frame index. eliminateFrameIndex will replace these instructions with
(LDWSP|STWSP|LDAWSP) or (LDW|STW|LDAWF) if a frame pointer is in use.
This fixes PR 3324. Previously we used LDWSP, STWSP, LDAWSP before frame
pointer elimination. However since they were marked as implicitly using
SP they could not be rematerialised.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62238 91177308-0d34-0410-b5e6-96231b3b80d8
to Eli for pointing out that these forms don't ignore the high bits of
their index operands, and as such are not immediately suitable for use
by isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62194 91177308-0d34-0410-b5e6-96231b3b80d8
scheduling dependencies. Add assertion checks to help catch
this.
It appears the Mips target defaults to list-td, and it has a
regression test that uses a physreg dependence. Such code was
liable to be miscompiled, and now evokes an assertion failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62177 91177308-0d34-0410-b5e6-96231b3b80d8
via two paths, process it once not twice, d'oh!
Analysis, testcase and original patch thanks to
Mon Ping Wang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62169 91177308-0d34-0410-b5e6-96231b3b80d8
Also future proof the scheduler to handle "normal" physical register dependencies. The code is not exercised yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62074 91177308-0d34-0410-b5e6-96231b3b80d8
v1024 = EDI // not killed
=
= EDI
One possible solution is for the coalescer to examine the sub-register live intervals in the same manner as the physical register. Another possibility is to examine defs and uses (when needed) of sub-registers. Both solutions are too expensive. For now, look for "short virtual intervals" and scan instructions to look for conflict instead.
This is a small win on x86-64. e.g. It shaves 403.gcc by ~80 instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61847 91177308-0d34-0410-b5e6-96231b3b80d8
into their left operand, rather than their right. Do this
by commuting the operands and inverting the condition.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61842 91177308-0d34-0410-b5e6-96231b3b80d8
avoid the need for spilling, add a new testcase that tests that the
pcmpeqd used for V_SETALLONES is changed to a constant-pool load as
needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61831 91177308-0d34-0410-b5e6-96231b3b80d8
converted to LEA64_32r in x86's convertToThreeAddress. This
replaces code like this:
movl %esi, %edi
inc %edi
with this:
lea 1(%rsi), %edi
which appears to be beneficial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61830 91177308-0d34-0410-b5e6-96231b3b80d8
aggregate types. Don't increment the current index after reaching
the end of a struct, as it will already be pointing at
one-past-the end. This fixes PR3288.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61828 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix bugs 3194, 3195: i128 load/stores produce correct code (although, we
need to ensure that i128 is 16-byte aligned in real life), and 128 zero-
extends are supported.
- New td file: SPU128InstrInfo.td: this is where all new i128 support should
be put in the future.
- Continue to hammer on i64 operations and test cases; ensure that the only
remaining problem will be i64 mul.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61784 91177308-0d34-0410-b5e6-96231b3b80d8
AddPseudoTwoAddrDeps. This lets the scheduling infrastructure
avoid recalculating node heights. In very large testcases this
was a major bottleneck. Thanks to Roman Levenstein for finding
this!
As a side effect, fold-pcmpeqd-0.ll is now scheduled better
and it no longer requires spilling on x86-32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61778 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix (brcond (setq ...)) bug, where BRNZ should have been used vice BRZ.
- Kill unused/unnecessary nodes in SPUNodes.td
- Beef out the i64operations.c test harness to use a lot of unaligned
loads, test loops and LLVM loop/basic block optimizations; run the
test harness successfully on real Cell hardware.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61664 91177308-0d34-0410-b5e6-96231b3b80d8
- Remove custom lowering for BRCOND
- Add remaining functionality for branches in SPUInstrInfo, such as branch
condition reversal and load/store folding. Updated BrCond test to reflect
branch reversal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61597 91177308-0d34-0410-b5e6-96231b3b80d8
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61542 91177308-0d34-0410-b5e6-96231b3b80d8
instruction sequence and cannot ordinarily be simplified by DAGcombine
into the various target description files or SPUDAGToDAGISel.cpp.
This makes some 64-bit operations legal.
- Eliminate target-dependent ISD enums.
- Update tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61508 91177308-0d34-0410-b5e6-96231b3b80d8
DAGcombine's ability to find reasons to remove truncates when they were not
needed. Consequently, the CellSPU backend would produce correct, but _really
slow and horrible_, code.
Replaced with instruction sequences that do the equivalent truncation in
SPUInstrInfo.td.
- Re-examine how unaligned loads and stores work. Generated unaligned
load code has been tested on the CellSPU hardware; see the i32operations.c
and i64operations.c in CodeGen/CellSPU/useful-harnesses. (While they may be
toy test code, it does prove that some real world code does compile
correctly.)
- Fix truncating stores in bug 3193 (note: unpack_df.ll will still make llc
fault because i64 ult is not yet implemented.)
- Added i64 eq and neq for setcc and select/setcc; started new instruction
information file for them in SPU64InstrInfo.td. Additional i64 operations
should be added to this file and not to SPUInstrInfo.td.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61447 91177308-0d34-0410-b5e6-96231b3b80d8