InstSelectSimple.cpp:
Change the checks for proper I/O port address size into an exit() instead
of an assertion. Assertions aren't used in Release builds, and handling
this error should be graceful (not that this counts as graceful, but it's
more graceful).
Modified the generation of the IN/OUT instructions to have 0 arguments.
X86InstrInfo.td:
Added the OpSize attribute to the 16 bit IN and OUT instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12786 91177308-0d34-0410-b5e6-96231b3b80d8
I/O port instructions on x86. The specific code sequence is tailored to
the parameters and return value of the intrinsic call.
Added the ability for implicit defintions to be printed in the Instruction
Printer.
Added the ability for RawFrm instruction to print implict uses and
defintions with correct comma output. This required adjustment to some
methods so that a leading comma would or would not be printed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12782 91177308-0d34-0410-b5e6-96231b3b80d8
Enable folding of long seteq/setne comparisons into branches and select instructions
Implement unfolded long relational comparisons against a constants a bit more efficiently
Folding comparisons changes code that looks like this:
mov %EAX, DWORD PTR [%ESP + 4]
mov %EDX, DWORD PTR [%ESP + 8]
mov %ECX, %EAX
or %ECX, %EDX
sete %CL
test %CL, %CL
je .LBB2 # PC rel: F
into code that looks like this:
mov %EAX, DWORD PTR [%ESP + 4]
mov %EDX, DWORD PTR [%ESP + 8]
mov %ECX, %EAX
or %ECX, %EDX
jne .LBB2 # PC rel: F
This speeds up 186.crafty by 6% with llc-ls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12702 91177308-0d34-0410-b5e6-96231b3b80d8
of the words of the constant is zeros. For example:
Y = and long X, 1234
now generates:
Yl = and Xl, 1234
Yh = 0
instead of:
Yl = and Xl, 1234
Yh = and Xh, 0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12685 91177308-0d34-0410-b5e6-96231b3b80d8
* In promote32, if we can just promote a constant value, do so instead of
promoting a constant dynamically.
* In visitReturn inst, actually USE the promote32 argument that takes a
Value*
The end result of this is that we now generate this:
test:
mov %EAX, 0
ret
instead of...
test:
mov %AX, 0
movzx %EAX, %AX
ret
for:
ushort %test() {
ret ushort 0
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12679 91177308-0d34-0410-b5e6-96231b3b80d8
the X86 does not support a full set of fp cmove instructions, so we can't always
fold the condition into the select. :( Yuck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12577 91177308-0d34-0410-b5e6-96231b3b80d8
an incoming value from a block, the selector would evaluate the constant
at the TOP of the block instead of at the end of the block. This made the
live range for the constant span the entire block, increasing register
pressure needlessly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12542 91177308-0d34-0410-b5e6-96231b3b80d8
folding load instructions into other instructions across free instruction
boundaries. Perhaps this will also fix the other strange failures?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12494 91177308-0d34-0410-b5e6-96231b3b80d8
testcase like this:
int %test(int* %P, int %A) {
%Pv = load int* %P
%B = add int %A, %Pv
ret int %B
}
We now generate:
test:
mov %ECX, DWORD PTR [%ESP + 4]
mov %EAX, DWORD PTR [%ESP + 8]
add %EAX, DWORD PTR [%ECX]
ret
Instead of:
test:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
mov %EAX, DWORD PTR [%EAX]
add %EAX, %ECX
ret
... saving one instruction, and often a register. Note that there are a lot
of other instructions that could use this, but they aren't handled. I'm not
really interested in adding them, but mul/div and all of the FP instructions
could be supported as well if someone wanted to add them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12204 91177308-0d34-0410-b5e6-96231b3b80d8
of generating this code:
mov %EAX, 4
mov DWORD PTR [%ESP], %EAX
mov %AX, 123
movsx %EAX, %AX
mov DWORD PTR [%ESP + 4], %EAX
call Y
we now generate:
mov DWORD PTR [%ESP], 4
mov DWORD PTR [%ESP + 4], 123
call Y
Which hurts the eyes less. :)
Considering that register pressure around call sites is already high (with all
of the callee clobber registers n stuff), this may help a lot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12028 91177308-0d34-0410-b5e6-96231b3b80d8
their names more decriptive. A name consists of the base name, a
default operand size followed by a character per operand with an
optional special size. For example:
ADD8rr -> add, 8-bit register, 8-bit register
IMUL16rmi -> imul, 16-bit register, 16-bit memory, 16-bit immediate
IMUL16rmi8 -> imul, 16-bit register, 16-bit memory, 8-bit immediate
MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11995 91177308-0d34-0410-b5e6-96231b3b80d8
scaled indexes. This allows us to compile GEP's like this:
int* %test([10 x { int, { int } }]* %X, int %Idx) {
%Idx = cast int %Idx to long
%X = getelementptr [10 x { int, { int } }]* %X, long 0, long %Idx, ubyte 1, ubyte 0
ret int* %X
}
Into a single address computation:
test:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
lea %EAX, DWORD PTR [%EAX + 8*%ECX + 4]
ret
Before it generated:
test:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
shl %ECX, 3
add %EAX, %ECX
lea %EAX, DWORD PTR [%EAX + 4]
ret
This is useful for things like int/float/double arrays, as the indexing can be folded into
the loads&stores, reducing register pressure and decreasing the pressure on the decode unit.
With these changes, I expect our performance on 256.bzip2 and gzip to improve a lot. On
bzip2 for example, we go from this:
10665 asm-printer - Number of machine instrs printed
40 ra-local - Number of loads/stores folded into instructions
1708 ra-local - Number of loads added
1532 ra-local - Number of stores added
1354 twoaddressinstruction - Number of instructions added
1354 twoaddressinstruction - Number of two-address instructions
2794 x86-peephole - Number of peephole optimization performed
to this:
9873 asm-printer - Number of machine instrs printed
41 ra-local - Number of loads/stores folded into instructions
1710 ra-local - Number of loads added
1521 ra-local - Number of stores added
789 twoaddressinstruction - Number of instructions added
789 twoaddressinstruction - Number of two-address instructions
2142 x86-peephole - Number of peephole optimization performed
... and these types of instructions are often in tight loops.
Linear scan is also helped, but not as much. It goes from:
8787 asm-printer - Number of machine instrs printed
2389 liveintervals - Number of identity moves eliminated after coalescing
2288 liveintervals - Number of interval joins performed
3522 liveintervals - Number of intervals after coalescing
5810 liveintervals - Number of original intervals
700 spiller - Number of loads added
487 spiller - Number of stores added
303 spiller - Number of register spills
1354 twoaddressinstruction - Number of instructions added
1354 twoaddressinstruction - Number of two-address instructions
363 x86-peephole - Number of peephole optimization performed
to:
7982 asm-printer - Number of machine instrs printed
1759 liveintervals - Number of identity moves eliminated after coalescing
1658 liveintervals - Number of interval joins performed
3282 liveintervals - Number of intervals after coalescing
4940 liveintervals - Number of original intervals
635 spiller - Number of loads added
452 spiller - Number of stores added
288 spiller - Number of register spills
789 twoaddressinstruction - Number of instructions added
789 twoaddressinstruction - Number of two-address instructions
258 x86-peephole - Number of peephole optimization performed
Though I'm not complaining about the drop in the number of intervals. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11820 91177308-0d34-0410-b5e6-96231b3b80d8
to do analysis.
*** FOLD getelementptr instructions into loads and stores when possible,
making use of some of the crazy X86 addressing modes.
For example, the following C++ program fragment:
struct complex {
double re, im;
complex(double r, double i) : re(r), im(i) {}
};
inline complex operator+(const complex& a, const complex& b) {
return complex(a.re+b.re, a.im+b.im);
}
complex addone(const complex& arg) {
return arg + complex(1,0);
}
Used to be compiled to:
_Z6addoneRK7complex:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
*** mov %EDX, %ECX
fld QWORD PTR [%EDX]
fld1
faddp %ST(1)
*** add %ECX, 8
fld QWORD PTR [%ECX]
fldz
faddp %ST(1)
*** mov %ECX, %EAX
fxch %ST(1)
fstp QWORD PTR [%ECX]
*** add %EAX, 8
fstp QWORD PTR [%EAX]
ret
Now it is compiled to:
_Z6addoneRK7complex:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
fld QWORD PTR [%ECX]
fld1
faddp %ST(1)
fld QWORD PTR [%ECX + 8]
fldz
faddp %ST(1)
fxch %ST(1)
fstp QWORD PTR [%EAX]
fstp QWORD PTR [%EAX + 8]
ret
Other programs should see similar improvements, across the board. Note that
in addition to reducing instruction count, this also reduces register pressure
a lot, always a good thing on X86. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11819 91177308-0d34-0410-b5e6-96231b3b80d8
into a single LEA instruction. This should improve the code generated for
things like X->A.B.C[12].D.
The bigger benefit is still coming though. Note that this uses an LEA instruction
instead of an add, giving the register allocator more freedom. We should probably
never generate ADDri32's.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11817 91177308-0d34-0410-b5e6-96231b3b80d8
block into MachineBasicBlock::getFirstTerminator().
This also fixes a bug in the implementation of the above in both
RegAllocLocal and InstrSched, where instructions where added after the
terminator if the basic block's only instruction was a terminator (it
shouldn't matter for RegAllocLocal since this case never occurs in
practice).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11748 91177308-0d34-0410-b5e6-96231b3b80d8
use FP instructions. This reduces the number of instructions inserted in
176.gcc (for example) from 58074 to 101 (it doesn't use much FP, which
is typical). This reduction speeds up the entire code generator. In the
case of 176.gcc, llc went from taking 31.38s to 24.78s. The passes that
sped up the most are the register allocator and the 2 live variable analysis
passes, which sped up 2.3, 1.3, and 1.5s respectively. The asmprinter
pass also sped up because it doesn't print the instructions in comments :)
Note that this patch is likely to expose latent bugs in machine code passes,
because now basicblock can be empty, where they were never empty before. I
cleaned out regalloclocal, but who knows about linscan :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11717 91177308-0d34-0410-b5e6-96231b3b80d8
switch statements in the constructors and simplifies the
implementation of the getUseType() member function. You will have to
specify defs using MachineOperand::Def instead of MOTy::Def though
(similarly for Use and UseAndDef).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11715 91177308-0d34-0410-b5e6-96231b3b80d8
(minor) benefits right now:
1. An extra dummy MOVrr32 is gone. This move would often be coallesced by
both allocators anyway.
2. The code now uses the gep_type_iterator to walk the gep, which should future
proof it a bit. It still assumes that array indexes are Longs though.
These don't really justify rewriting the code. The big benefit will come later
though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11710 91177308-0d34-0410-b5e6-96231b3b80d8
ilist of MachineInstr objects. This allows constant time removal and
insertion of MachineInstr instances from anywhere in each
MachineBasicBlock. It also allows for constant time splicing of
MachineInstrs into or out of MachineBasicBlocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11340 91177308-0d34-0410-b5e6-96231b3b80d8
FP_REG_KILL instructions at the end of blocks involved with critical edges.
Fix a bug where FP_REG_KILL instructions weren't inserted in fall through
unconditional branches. Perhaps this will fix some linscan problems?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11019 91177308-0d34-0410-b5e6-96231b3b80d8
instruction selector by adding a new pseudo-instruction
FP_REG_KILL. This instruction implicitly defines all x86 fp registers
and is a terminator so that passes which add machine code at the end
of basic blocks (like phi elimination) do not add instructions between
it and the branch or return instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10562 91177308-0d34-0410-b5e6-96231b3b80d8
* Implement R1 = R2 * C where R1 and R2 are 32 or 16 bits. This avoids an
extra copy into a register, reducing register pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9278 91177308-0d34-0410-b5e6-96231b3b80d8
getelementptr code path for use by other code paths (like malloc and alloca).
* Optimize comparisons with zero
* Generate neg, not, inc, and dec instructions, when possible.
This gives some code size wins, which might translate into performance. We'll
see tommorow in the nightly tester.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9267 91177308-0d34-0410-b5e6-96231b3b80d8
until we implement unwinding.
Add support for the invoke instruction, which codegens just like a call with
a branch after it.
The end effect of this change is that programs using the invoke instruction,
but never unwinding, will work fine. Programs that unwind will abort until
we get unwind support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8187 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid a fall-through in the (stubby) treatment of the longjmp intrinsic
call which causes llc & lli to core-dump.
Add a sort-of treatment of cast double to ulong. I am not really sure
what a user should expect to see upon casting a negative FP value to
unsigned long long. But with what is given here, I was able to write
a program that could cast -123.456 to ulong and back and get -123.0,
which seems like a step in the right direction. GCC seems to give you
0. I don't know if I'd consider that useful.
These cases were coming up in GNU coreutils-5.0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7205 91177308-0d34-0410-b5e6-96231b3b80d8
This avoid generating a register to hold C, which in turn speeds up the
register allocator by a lot: ~9% on 164.gzip and ~17% on 256.bzip2. This
also speeds up other passes. This also speeds up execution of the program
marginally, and makes the asm much easier to read. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6626 91177308-0d34-0410-b5e6-96231b3b80d8
and exit of the function. This fixes bug: Jello/2003-05-06-LivenessClobber.llx
and the Fhourstones benchmark
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6010 91177308-0d34-0410-b5e6-96231b3b80d8
This improves the performance of the power benchmark by a few percent.
This will be neccesary for SSE code, which requires 16 byte alignment of
the stack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5320 91177308-0d34-0410-b5e6-96231b3b80d8
* Support arbitrary FP constants
* Fix bugs in frame layout for function calls and incoming arguments
* Insert copies for constant arguments to PHI nodes into the BOTTOM of
predecessor blocks, not the top.
* Implement _floating point_ support: setcc, return, load, store, cast
* Fix several bugs in the cast instruction
* Abstract out call emission and load/store for FP
* Implement malloc/free without previous lowering pass.
* Make use of new forms of MachineOperand
* Implement _long_ support!
* Fix many bugs in FP support
* Change branch from je/jne to je/jmp
* Simplify code generated for GEP instructions
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5223 91177308-0d34-0410-b5e6-96231b3b80d8
* Only load incoming arguments into virtual registers once at the
beginning of the function
* Assign different virtual registers to each reference to constants/globals
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5088 91177308-0d34-0410-b5e6-96231b3b80d8