This patch will optimize the following:
sub r1, r3
cmp r3, r1 or cmp r1, r3
bge L1
TO
sub r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can eliminate
the "cmp" instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157831 91177308-0d34-0410-b5e6-96231b3b80d8
This implements codegen support for accesses to thread-local variables
using the local-dynamic model, and adds a clean-up pass so that the base
address for the TLS block can be re-used between local-dynamic access on
an execution path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157818 91177308-0d34-0410-b5e6-96231b3b80d8
types, as well as int<->ptr casts. This allows us to tailcall functions
with some trivial casts between the call and return (i.e. because the
return types disagree).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157798 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157755 91177308-0d34-0410-b5e6-96231b3b80d8
I disabled FMA3 autodetection, since the result may differ from expected for some benchmarks.
I added tests for GodeGen and intrinsics.
I did not change llvm.fma.f32/64 - it may be done later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157737 91177308-0d34-0410-b5e6-96231b3b80d8
It helps compile exotic inline asm. In the test case, normal GR32
virtual registers use up eax-edx so the final GR32_ABCD live range has
no registers left. Since all the live ranges were tiny, we had no way of
prioritizing the smaller register class.
This patch allows tiny unspillable live ranges to be evicted by tiny
unspillable live ranges from a smaller register class.
<rdar://problem/11542429>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157715 91177308-0d34-0410-b5e6-96231b3b80d8
integer registers. This is already supported by the fastcc convention, but it doesn't
hurt to support it in the standard conventions as well.
In cases where we can cheat at the calling convention, this allows us to avoid returning
things through memory in more cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157698 91177308-0d34-0410-b5e6-96231b3b80d8
Besides adding the new insertPass function, this patch uses it to
enhance the existing -print-machineinstrs so that the MachineInstrs
after a specific pass can be printed.
Patch by Bin Zeng!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157655 91177308-0d34-0410-b5e6-96231b3b80d8
This required light surgery on the assembler and disassembler
because the instructions use an uncommon encoding. They are
the only two instructions in x86 that use register operands
and two immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157634 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyCFG tends to form a lot of 2-3 case switches when merging branches. Move
the most likely condition to the front so it is checked first and the others can
be skipped. This is currently not as effective as it could be because SimplifyCFG
destroys profiling metadata when merging branches and switches. Merging branch
weight metadata is tricky though.
This code touches at most 3 cases so I didn't use a proper sorting algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157521 91177308-0d34-0410-b5e6-96231b3b80d8
Live ranges with a constrained register class may benefit from splitting
around individual uses. It allows the remaining live range to use a
larger register class where it may allocate. This is like spilling to a
different register class.
This is only attempted on constrained register classes.
<rdar://problem/11438902>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157354 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the coalescer keeps live intervals and machine code in sync at
all times, it needs to deal with identity copies differently.
When merging two virtual registers, all identity copies are removed
right away. This means that other identity copies must come from
somewhere else, and they are going to have a value number.
Deal with such copies by merging the value numbers before erasing the
copy instruction. Otherwise, we leave dangling value numbers in the live
interval.
This fixes PR12927.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157340 91177308-0d34-0410-b5e6-96231b3b80d8
Also make sure registers aren't erased twice if the dead def mentions
the register twice.
This fixes PR12911.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157254 91177308-0d34-0410-b5e6-96231b3b80d8
may be RAUW'd by the recursive call to LegalizeOps; instead, retrieve
the other operands when calling UpdateNodeOperands. Fixes PR12889.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157162 91177308-0d34-0410-b5e6-96231b3b80d8
X86 has 2-addr instructions with different constraints on the tied def
and use operands. One is GR32, one is GR32_NOSP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157149 91177308-0d34-0410-b5e6-96231b3b80d8
Dead code elimination during coalescing could cause a virtual register
to be split into connected components. The following rewriting would be
confused about the already joined copies present in the code, but
without a corresponding value number in the live range.
Erase all joined copies instantly when joining intervals such that the
MI and LiveInterval representations are always in sync.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157135 91177308-0d34-0410-b5e6-96231b3b80d8
The late dead code elimination is no longer necessary.
The test changes are cause by a register hint that can be either %rdi or
%rax. The choice depends on the use list order, which this patch changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157131 91177308-0d34-0410-b5e6-96231b3b80d8
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157062 91177308-0d34-0410-b5e6-96231b3b80d8
non-profitable commute using outdated info. The test case would still fail
because of poor pre-RA schedule. That will be fixed by MI scheduler.
rdar://11472010
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157038 91177308-0d34-0410-b5e6-96231b3b80d8
This is the same as the other tests: Clever tricks are required to make
the arguments and return value line up in a single-instruction function.
It rarely happens in real life.
We have plenty other examples of this behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157030 91177308-0d34-0410-b5e6-96231b3b80d8
This option has been disabled for a while, and it is going away so I can
clean up the coalescer code.
The tests that required physreg joining to be enabled were almost all of
the form "tiny function with interference between arguments and return
value". Such functions are usually inlined in the real world.
The problem exposed by phys_subreg_coalesce-3.ll is real, but fairly
rare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157027 91177308-0d34-0410-b5e6-96231b3b80d8
It is now possible to coalesce weird skewed sub-register copies by
picking a super-register class larger than both original registers. The
included test case produces code like this:
vld2.32 {d16, d17, d18, d19}, [r0]!
vst2.32 {d18, d19, d20, d21}, [r0]
We still perform interference checking as if it were a normal full copy
join, so this is still quite conservative. In particular, the f1 and f2
functions in the included test case still have remaining copies because
of false interference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156878 91177308-0d34-0410-b5e6-96231b3b80d8
RAFast must add an <imp-def> operand when it is rewriting a sub-register
def that isn't a read-modify-write.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156777 91177308-0d34-0410-b5e6-96231b3b80d8
- Remove code which lowers pseudo SETGP01.
- Fix LowerSETGP01. The first two of the three instructions that are emitted to
initialize the global pointer register now use register $2.
- Stop emitting .cpload directive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156689 91177308-0d34-0410-b5e6-96231b3b80d8
pointer register.
This is the first of the series of patches which clean up the way global pointer
register is used. The patches will make the following improvements:
- Make $gp an allocatable temporary register rather than reserving it.
- Use a virtual register as the global pointer register and let the register
allocator decide which register to assign to it or whether spill/reloads are
needed.
- Make sure $gp is valid at the entry of a called function, which is necessary
for functions using lazy binding.
- Remove the need for emitting .cprestore and .cpload directives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156671 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a TODO from 2007 :) Previously, LLVM would emit the wrong
code here (see the update to test/CodeGen/X86/tls-pie.ll).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156611 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156599 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156550 91177308-0d34-0410-b5e6-96231b3b80d8
Starting r155461 we are able to select patterns for vbroadcast even when the load op is used by other users.
Fix PR11900.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156539 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize -(x != 0) on X86
FROM
cmpl $0x01,%edi
sbbl %eax,%eax
notl %eax
TO
negl %edi
sbbl %eax %eax
In order to generate negl, I added patterns in Target/X86/X86InstrCompiler.td:
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
rdar: 10961709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156312 91177308-0d34-0410-b5e6-96231b3b80d8
The primitive conservative heuristic seems to give a slight overall
improvement while not regressing stuff. Make it available to wider
testing. If you notice any speed regressions (or significant code
size regressions) let me know!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156258 91177308-0d34-0410-b5e6-96231b3b80d8
This came up when a change in block placement formed a cmov and slowed down a
hot loop by 50%:
ucomisd (%rdi), %xmm0
cmovbel %edx, %esi
cmov is a really bad choice in this context because it doesn't get branch
prediction. If we emit it as a branch, an out-of-order CPU can do a better job
(if the branch is predicted right) and avoid waiting for the slow load+compare
instruction to finish. Of course it won't help if the branch is unpredictable,
but those are really rare in practice.
This patch uses a dumb conservative heuristic, it turns all cmovs that have one
use and a direct memory operand into branches. cmovs usually save some code
size, so we disable the transform in -Os mode. In-Order architectures are
unlikely to benefit as well, those are included in the
"predictableSelectIsExpensive" flag.
It would be better to reuse branch probability info here, but BPI doesn't
support select instructions currently. It would make sense to use the same
heuristics as the if-converter pass, which does the opposite direction of this
transform.
Test suite shows a small improvement here and there on corei7-level machines,
but the actual results depend a lot on the used microarchitecture. The
transformation is currently disabled by default and available by passing the
-enable-cgp-select2branch flag to the code generator.
Thanks to Chandler for the initial test case to him and Evan Cheng for providing
me with comments and test-suite numbers that were more stable than mine :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156234 91177308-0d34-0410-b5e6-96231b3b80d8
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156196 91177308-0d34-0410-b5e6-96231b3b80d8
to catch cases like:
%reg1024<def> = MOV r1
%reg1025<def> = MOV r0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
By commuting ADD, it let coalescer eliminate all of the copies. However, there
was a bug in the heuristics where it ended up commuting the ADD in:
%reg1024<def> = MOV r0
%reg1025<def> = MOV 0
%reg1026<def> = ADD %reg1024, %reg1025
r0 = MOV %reg1026
That did no benefit but rather ensure the last MOV would not be coalesced.
rdar://11355268
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156048 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize -(x != 0) on X86
FROM
cmpl $0x01,%edi
sbbl %eax,%eax
notl %eax
TO
negl %edi
sbbl %eax %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155853 91177308-0d34-0410-b5e6-96231b3b80d8
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
(this time, actually commit what was reviewed!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155825 91177308-0d34-0410-b5e6-96231b3b80d8
ARM BUILD_VECTORs created after type legalization cannot use i8 or i16
operands, since those types are not legal. Instead use i32 operands, which
will be implicitly truncated by the BUILD_VECTOR to match the element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155824 91177308-0d34-0410-b5e6-96231b3b80d8
This time, also fix the caller of AddGlue to properly handle
incomplete chains. AddGlue had failure modes, but shamefully hid them
from its caller. It's luck ran out.
Fixes rdar://11314175: BuildSchedUnits assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155749 91177308-0d34-0410-b5e6-96231b3b80d8
On x86-32, structure return via sret lets the callee pop the hidden
pointer argument off the stack, which the caller then re-pushes.
However if the calling convention is fastcc, then a register is used
instead, and the caller should not adjust the stack. This is
implemented with a check of IsTailCallConvention
X86TargetLowering::LowerCall but is now checked properly in
X86FastISel::DoSelectCall.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155745 91177308-0d34-0410-b5e6-96231b3b80d8
x == -y --> x+y == 0
x != -y --> x+y != 0
On x86, the generated code goes from
negl %esi
cmpl %esi, %edi
je .LBB0_2
to
addl %esi, %edi
je .L4
This case is correctly handled for ARM with "cmn".
Patch by Manman Ren.
rdar://11245199
PR12545
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155739 91177308-0d34-0410-b5e6-96231b3b80d8
* Model FPSW (the FPU status word) as a register.
* Add ISel patterns for the FUCOM*, FNSTSW and SAHF instructions.
* During Legalize/Lowering, build a node sequence to transfer the comparison
result from FPSW into EFLAGS. If you're wondering about the right-shift: That's
an implicit sub-register extraction (%ax -> %ah) which is handled later on by
the instruction selector.
Fixes PR6679. Patch by Christoph Erhardt!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155704 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombine strangeness may result in multiple loads from the same
offset. They both may try to glue themselves to another load. We could
insist that the redundant loads glue themselves to each other, but the
beter fix is to bail out from bad gluing at the time we detect it.
Fixes rdar://11314175: BuildSchedUnits assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155668 91177308-0d34-0410-b5e6-96231b3b80d8
On some cores it's a bad idea for performance to mix VFP and NEON instructions
and since these patterns are NEON anyway, the NEON load should be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155630 91177308-0d34-0410-b5e6-96231b3b80d8
the feature set of v7a. This comes about if the user specifies something like
-arch armv7 -mcpu=cortex-m3. We shouldn't be generating instructions such as
uxtab in this case.
rdar://11318438
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155601 91177308-0d34-0410-b5e6-96231b3b80d8
using the pattern (vbroadcast (i32load src)). In some cases, after we generate
this pattern new users are added to the load node, which prevent the selection
of the blend pattern. This commit provides fallback patterns which perform
in-vector broadcast (using in-vector vbroadcast in AVX2 and pshufd on AVX1).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155437 91177308-0d34-0410-b5e6-96231b3b80d8
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155395 91177308-0d34-0410-b5e6-96231b3b80d8
test suite failures. The failures occur at each stage, and only get
worse, so I'm reverting all of them.
Please resubmit these patches, one at a time, after verifying that the
regression test suite passes. Never submit a patch without running the
regression test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155372 91177308-0d34-0410-b5e6-96231b3b80d8
The X86 target is editing the selection DAG while isel is selecting
nodes following a topological ordering. When the DAG hacking triggers
CSE, nodes can be deleted and bad things happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155257 91177308-0d34-0410-b5e6-96231b3b80d8
when the set bits aren't the same for both args of the xor.
This transformation is in the function TargetLowering::SimplifyDemandedBits
in the file lib/CodeGen/SelectionDAG/TargetLowering.cpp.
I have tested this test using a previous version of llc which the defect and
the a version of llc which does not. I got the expected fail and pass,
respectively.
This test goes with rdar://11195364 and the check in with the fix: svn r154955
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155156 91177308-0d34-0410-b5e6-96231b3b80d8
also fix SimplifyLibCalls to use TLI rather than compile-time conditionals to enable optimizations on floor, ceil, round, rint, and nearbyint
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154960 91177308-0d34-0410-b5e6-96231b3b80d8
both fallthrough and a conditional branch target the same successor.
Gracefully delete the conditional branch and introduce any unconditional
branch needed to reach the actual successor. This fixes memory
corruption in 2009-06-15-RegScavengerAssert.ll and possibly other tests.
Also, while I'm here fix a latent bug I spotted by inspection. I never
applied the same fundamental fix to this fallthrough successor finding
logic that I did to the logic used when there are no conditional
branches. As a consequence it would have selected landing pads had they
be aligned in just the right way here. I don't have a test case as
I spotted this by inspection, and the previous time I found this
required have of TableGen's source code to produce it. =/ I hate backend
bugs. ;]
Thanks to Jim Grosbach for helping me reason through this and reviewing
the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154867 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly to test the waters. I'd like to get results from FNT
build bots and other bots running on non-x86 platforms.
This feature has been pretty heavily tested over the last few months by
me, and it fixes several of the execution time regressions caused by the
inlining work by preventing inlining decisions from radically impacting
block layout.
I've seen very large improvements in yacr2 and ackermann benchmarks,
along with the expected noise across all of the benchmark suite whenever
code layout changes. I've analyzed all of the regressions and fixed
them, or found them to be impossible to fix. See my email to llvmdev for
more details.
I'd like for this to be in 3.1 as it complements the inliner changes,
but if any failures are showing up or anyone has concerns, it is just
a flag flip and so can be easily turned off.
I'm switching it on tonight to try and get at least one run through
various folks' performance suites in case SPEC or something else has
serious issues with it. I'll watch bots and revert if anything shows up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154816 91177308-0d34-0410-b5e6-96231b3b80d8
once we start changing the block layout, so just nuke it. If anyone has
ideas about how to craft a code layout agnostic form of the test please
let me know.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154815 91177308-0d34-0410-b5e6-96231b3b80d8
rotation. When there is a loop backedge which is an unconditional
branch, we will end up with a branch somewhere no matter what. Try
placing this backedge in a fallthrough position above the loop header as
that will definitely remove at least one branch from the loop iteration,
where whole loop rotation may not.
I haven't seen any benchmarks where this is important but loop-blocks.ll
tests for it, and so this will be covered when I flip the default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154812 91177308-0d34-0410-b5e6-96231b3b80d8
laid out in a form with a fallthrough into the header and a fallthrough
out of the bottom. In that case, leave the loop alone because any
rotation will introduce unnecessary branches. If either side looks like
it will require an explicit branch, then the rotation won't add any, do
it to ensure the branch occurs outside of the loop (if possible) and
maximize the benefit of the fallthrough in the bottom.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154806 91177308-0d34-0410-b5e6-96231b3b80d8
This is a complex change that resulted from a great deal of
experimentation with several different benchmarks. The one which proved
the most useful is included as a test case, but I don't know that it
captures all of the relevant changes, as I didn't have specific
regression tests for each, they were more the result of reasoning about
what the old algorithm would possibly do wrong. I'm also failing at the
moment to craft more targeted regression tests for these changes, if
anyone has ideas, it would be welcome.
The first big thing broken with the old algorithm is the idea that we
can take a basic block which has a loop-exiting successor and a looping
successor and use the looping successor as the layout top in order to
get that particular block to be the bottom of the loop after layout.
This happens to work in many cases, but not in all.
The second big thing broken was that we didn't try to select the exit
which fell into the nearest enclosing loop (to which we exit at all). As
a consequence, even if the rotation worked perfectly, it would result in
one of two bad layouts. Either the bottom of the loop would get
fallthrough, skipping across a nearer enclosing loop and thereby making
it discontiguous, or it would be forced to take an explicit jump over
the nearest enclosing loop to earch its successor. The point of the
rotation is to get fallthrough, so we need it to fallthrough to the
nearest loop it can.
The fix to the first issue is to actually layout the loop from the loop
header, and then rotate the loop such that the correct exiting edge can
be a fallthrough edge. This is actually much easier than I anticipated
because we can handle all the hard parts of finding a viable rotation
before we do the layout. We just store that, and then rotate after
layout is finished. No inner loops get split across the post-rotation
backedge because we check for them when selecting the rotation.
That fix exposed a latent problem with our exitting block selection --
we should allow the backedge to point into the middle of some inner-loop
chain as there is no real penalty to it, the whole point is that it
*won't* be a fallthrough edge. This may have blocked the rotation at all
in some cases, I have no idea and no test case as I've never seen it in
practice, it was just noticed by inspection.
Finally, all of these fixes, and studying the loops they produce,
highlighted another problem: in rotating loops like this, we sometimes
fail to align the destination of these backwards jumping edges. Fix this
by actually walking the backwards edges rather than relying on loopinfo.
This fixes regressions on heapsort if block placement is enabled as well
as lots of other cases where the previous logic would introduce an
abundance of unnecessary branches into the execution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154783 91177308-0d34-0410-b5e6-96231b3b80d8
There is an assert at line 558 in ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA).
This assert needs to addressed for post RA scheduler. Until that assert is addressed,
any passes that uses post ra scheduler will fail. So, I am temporarily disabling the
hexagon tests until that fix is in.
The assert is as follows:
assert(!MI->isTerminator() && !MI->isLabel() &&
"Cannot schedule terminators or labels!");
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154617 91177308-0d34-0410-b5e6-96231b3b80d8
- FCOPYSIGN nodes that have operands of different types were not handled.
- Different code was generated depending on the endianness of the target.
Additionally, code is added that emits INS and EXT instructions, if they are
supported by target (they are R2 instructions).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154540 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Modify the code that lowers shuffles to blends from using blendvXX to vblendXX.
blendV uses a register for the selection while Vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154483 91177308-0d34-0410-b5e6-96231b3b80d8
don't elide the branch instruction if it's the only one in the block,
otherwise it's ok.
PR9796 and rdar://11215207
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154417 91177308-0d34-0410-b5e6-96231b3b80d8