Add a test case to show fewer instructions are needed to load an immediate
with the new way of loading immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148908 91177308-0d34-0410-b5e6-96231b3b80d8
Original log:
Introduce a new ConstantVector::getSplat constructor function to
simplify a really common case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148906 91177308-0d34-0410-b5e6-96231b3b80d8
did something extremely surprising, and shadowed actually useful
implementations that had completely different behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148898 91177308-0d34-0410-b5e6-96231b3b80d8
A REG_SEQUENCE instruction is lowered into a sequence of partial defs:
%vreg7:ssub_0<def,undef> = COPY %vreg20:ssub_0
%vreg7:ssub_1<def> = COPY %vreg2
%vreg7:ssub_2<def> = COPY %vreg2
%vreg7:ssub_3<def> = COPY %vreg2
The first def needs an <undef> flag to indicate it is the beginning of
the live range, while the other defs are read-modify-write. Previously,
we depended on LiveIntervalAnalysis to notice and fix the missing
<def,undef>, but that solution was never robust, it was causing problems
with ProcessImplicitDefs and the lowering of chained REG_SEQUENCE
instructions.
This fixes PR11841.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148879 91177308-0d34-0410-b5e6-96231b3b80d8
When not using subsections via symbols, the assembler can resolve
symbol differences (including pcrel references) to non-local
labels at assembly time, not just those in the same atom.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148865 91177308-0d34-0410-b5e6-96231b3b80d8
add a ConstantDataArray::getString method that corresponds to the (to be
removed) StringRef version of ConstantArray::get, but is dramatically more
efficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148804 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds an new option --arm-enable-ehabi-descriptors that
enables emitting unwinding descriptors. This provides a mode with a
working backtrace() without the (currently broken) exception support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148800 91177308-0d34-0410-b5e6-96231b3b80d8
and clean up some other misc stuff. Unlike ConstantArray, we will
prefer to emit .fill directives for "String" arrays that all have
the same value, since they are denser than emitting a .ascii
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148793 91177308-0d34-0410-b5e6-96231b3b80d8
same semantics as ConstantArray's but much more efficient because they
don't have to return std::string's. The ConstantArray methods will
eventually be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148792 91177308-0d34-0410-b5e6-96231b3b80d8
instead of its own hard coded thing, allowing it to handle
ConstantDataSequential and fixing some obscure bugs (e.g. it would
previously crash on a CAZ of vector type).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148788 91177308-0d34-0410-b5e6-96231b3b80d8
out into a new ConstantFoldLoadThroughGEPIndices (more useful) function
and rewrite it to be simpler, more efficient, and to handle the new
ConstantDataSequential type.
Enhance ConstantFoldLoadFromConstPtr to handle ConstantDataSequential.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148786 91177308-0d34-0410-b5e6-96231b3b80d8
violation -- MC cannot depend on CodeGen.
Specifically, the MCTargetDesc component of each target is actually
a subcomponent of the MC library. As such, it cannot depend on the
target-independent code generator, because MC itself cannot depend on
the target-independent code generator. This change moved a flag from the
ARM MCTargetDesc file ARMMCAsmInfo.cpp to the CodeGen layer in
ARMException.cpp, leaving behind an 'extern' to refer back to it. That
layering order isn't viable givin the constraints outlined above.
Commandline flags are designed to be static specifically to avoid these
types of bugs.
Fixing this is likely going to require some non-trivial refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148759 91177308-0d34-0410-b5e6-96231b3b80d8
classes, per PR1324. Not all of their helper functions are implemented,
nothing creates them, and the rest of the compiler doesn't handle them yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148741 91177308-0d34-0410-b5e6-96231b3b80d8
Let the generic token alias definitions handle the data subtype
suffices. We don't need explicit versions for each.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148718 91177308-0d34-0410-b5e6-96231b3b80d8
using OwningPtr. OwningPtr would barf when the densemap had to reallocate,
which doesn't appear to happen on the regression test suite, but obviously
happens in real life :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148700 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds an new value to the --arm-enable-ehabi option that
disables emitting unwinding descriptors. This mode gives a working
backtrace() without the (currently broken) exception support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148686 91177308-0d34-0410-b5e6-96231b3b80d8
returns false in the event the computation feeding into the pointer is
unreachable, which maybe ought to be true -- but this is at least consistent
with undef->isDereferenceablePointer().) Fixes PR11825!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148671 91177308-0d34-0410-b5e6-96231b3b80d8
in a subclass named DyldELFObject. This class supports rebasing the object file
it represents by re-mapping section addresses to the actual memory addresses
the object was placed in. This is required for MC-JIT implementation on ELF with
debugging support.
Patch reviewed on llvm-commits.
Developed together with Ashok Thirumurthi and Andrew Kaylor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148653 91177308-0d34-0410-b5e6-96231b3b80d8
ELF and MachO implementations of RuntimeDyldImpl go into their own header files now.
Reviewed on llvm-commits
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148652 91177308-0d34-0410-b5e6-96231b3b80d8
A register mask operand kills any live physreg that isn't preserved.
Unlike an implicit-def operand, the clobbered physregs are never live
afterwards.
This means LiveVariables has to track a much smaller number of live
physregs, and it should spend much less time in addRegisterDead().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148609 91177308-0d34-0410-b5e6-96231b3b80d8
The MachO file stores section alignment as log2(alignment-in-bytes). The
allocation routines want the raw alignment-in-bytes value, so adjust
for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148604 91177308-0d34-0410-b5e6-96231b3b80d8
We have patterns for vector sext and zext operations but were missing
anyext. Without those patterns, codegen will fail when the selection DAG
has any_extend nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148568 91177308-0d34-0410-b5e6-96231b3b80d8
Providing a template argment to a non-templatized class was crashing
tblgen. Add a diagnostic.
For example,
$ cat bug.td
class A;
def B : A<0> {
}
$ llvm-tblgen bug.td
bug.td:3:11: error: template argument provided to non-template class
def B : A<0> {
^
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148565 91177308-0d34-0410-b5e6-96231b3b80d8
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148556 91177308-0d34-0410-b5e6-96231b3b80d8
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148553 91177308-0d34-0410-b5e6-96231b3b80d8
can't handle. Also don't produce non-zero results for things which won't be
transformed by SROA at all just because we saw the loads/stores before we saw
the use of the address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148536 91177308-0d34-0410-b5e6-96231b3b80d8
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148535 91177308-0d34-0410-b5e6-96231b3b80d8
'insertvalue' instructions that recreate the structure returned by the
'landingpad' instruction. Because the 'insertvalue' instruction isn't supported
by FastISel, this can save a bit of time during -O0 compilation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148520 91177308-0d34-0410-b5e6-96231b3b80d8
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148444 91177308-0d34-0410-b5e6-96231b3b80d8
It adds register mask operands to x86 call instructions. Once all the
backend passes support register mask operands, this will be permanently
enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148438 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to implicit register operands. MC doesn't understand
register liveness and call clobbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148437 91177308-0d34-0410-b5e6-96231b3b80d8
This SelectionDAG node will be attached to call nodes by LowerCall(),
and eventually becomes a MO_RegisterMask MachineOperand on the
MachineInstr representing the call instruction.
LowerCall() will attach a register mask that depends on the calling
convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148436 91177308-0d34-0410-b5e6-96231b3b80d8
If the fixup is out of range for the Thumb1 instruction, relax it
to the Thumb2 encoding instead.
rdar://10711829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148424 91177308-0d34-0410-b5e6-96231b3b80d8
If the two fragments are in the same Atom, then the difference
expression is resolvable at compile time. Previously we were checking
that they were in the same fragment, but that breaks down in the
presence of instruction relaxation which has multiple fragments in the
same atom.
rdar://10711829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148423 91177308-0d34-0410-b5e6-96231b3b80d8
Load/store instructions w/ a fixup to be relative a function marked as thumb
don't use the low bit to specify thumb vs. non-thumb like interworking
branches do, so don't set it when dealing with those fixups.
rdar://10348687.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148366 91177308-0d34-0410-b5e6-96231b3b80d8
When set, this bit indicates that a register is completely defined by
the value of its sub-registers.
Use the CoveredBySubRegs property to infer which super-registers are
call-preserved given a list of callee-saved registers. For example, the
ARM registers D8-D15 are callee-saved. This now automatically implies
that Q4-Q7 are call-preserved.
Conversely, Win64 callees save XMM6-XMM15, but the corresponding
YMM6-YMM15 registers are not call-preserved because they are not fully
defined by their sub-registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148363 91177308-0d34-0410-b5e6-96231b3b80d8
The JIT is expected to take ownership of the TM that's passed in. The MCJIT
wasn't freeing it, resulting in leaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148356 91177308-0d34-0410-b5e6-96231b3b80d8
When the non-local symbol in the expression is in the same fragment
as the second symbol, the assembler can still evaluate the expression
without needing a relocation.
For example, on ARM:
_foo:
ldr lr, (_foo - 4)
rdar://10348687
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148341 91177308-0d34-0410-b5e6-96231b3b80d8
In CanXFormVExtractWithShuffleIntoLoad we assumed that EXTRACT_VECTOR_ELT can be later handled by the DAGCombiner.
However, in some cases on AVX, the EXTRACT_VECTOR_ELT is legalized to EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which
currently is not handled by the DAGCombiner. In this patch I added a check that we only extract from the XMM part.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148298 91177308-0d34-0410-b5e6-96231b3b80d8
It's becoming clear that LoopSimplify needs to unconditionally create loop preheaders. But that is a bigger fix. For now, continuing to hack LSR.
Fixes rdar://10701050 "Cannot split an edge from an IndirectBrInst" assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148288 91177308-0d34-0410-b5e6-96231b3b80d8
or clang bootstrap.
I will keep an eye on the bots.
Original message:
Only emit the Leh_func_endN symbol when needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148283 91177308-0d34-0410-b5e6-96231b3b80d8
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148262 91177308-0d34-0410-b5e6-96231b3b80d8