This allows us to remove the (bogus and unneeded) encoding information from
the pseudo-instruction class definitions. All of the pseudos that haven't
been converted yet and still need encoding information instance from the normal
instruction classes and explicitly set isCodeGenOnly, and so are distinct
from this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134540 91177308-0d34-0410-b5e6-96231b3b80d8
Pseudo-instructions don't have encoding information, as they're lowered
to real instructions by the time we're doing binary encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134533 91177308-0d34-0410-b5e6-96231b3b80d8
If the function allocates reserved stack space for callee argument frames,
estimateStackSize() needs to account for that, as it doesn't show up as
ordinary frame objects. Otherwise, a callee with a large argument list will
throw off the calculations for whether to allocate an emergency spill slot
and we get assert() failures in the register scavenger.
rdar://9715469
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134415 91177308-0d34-0410-b5e6-96231b3b80d8
The DSP instructions in the Thumb2 instruction set are an optional extension
in the Cortex-M* archtitecture. When present, the implementation is considered
an "ARMv7E-M implementation," and when not, an "ARMv7-M implementation."
Add a subtarget feature hook for the v7e-m instructions and hook it up. The
cortex-m3 cpu is an example of a v7m implementation, while the cortex-m4 is
a v7e-m implementation.
rdar://9572992
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134261 91177308-0d34-0410-b5e6-96231b3b80d8
itineraries.
- Refactor TargetSubtarget to be based on MCSubtargetInfo.
- Change tablegen generated subtarget info to initialize MCSubtargetInfo
and hide more details from targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134257 91177308-0d34-0410-b5e6-96231b3b80d8
t2MOVCC[ri] are just t2MOV[ri] instructions, so properly pseudo-ize them.
The Thumb1 versions, tMOVCC[ri] were only present for use by the size-
reduction pass, so they're no longer necessary at all and can be deleted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134242 91177308-0d34-0410-b5e6-96231b3b80d8
Merge the tMOVr, tMOVgpr2tgpr, tMOVtgpr2gpr, and tMOVgpr2gpr instructions
into tMOVr. There's no need to keep them separate. Giving the tMOVr
instruction the proper GPR register class for its operands is sufficient
to give the register allocator enough information to do the right thing
directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134204 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a FIXME and allow predication (in Thumb2) for the T1 register to
register MOV instructions. This allows some better codegen with
if-conversion (as seen in the test updates), plus it lays the groundwork
for pseudo-izing the tMOVCC instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134197 91177308-0d34-0410-b5e6-96231b3b80d8
It's just a call to a special helper function. Get rid of the T2 variant
entirely, as it's identical to the Thumb1 version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134178 91177308-0d34-0410-b5e6-96231b3b80d8
It's just a t2LDMIA_UPD instruction with extra codegen properties, so it
doesn't need the encoding information. As a side-benefit, we now correctly
recognize for instruction printing as a 'pop' instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134173 91177308-0d34-0410-b5e6-96231b3b80d8
It's just a tPOP instruction with additional code-gen properties, so it
doesn't need encoding information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134172 91177308-0d34-0410-b5e6-96231b3b80d8
tADDrSPi is not predicable, so we can't size-reduce a t2ADDri to it if the
predicate is anything other than "always."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134130 91177308-0d34-0410-b5e6-96231b3b80d8
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134127 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike Thumb1, Thumb2 does not have dedicated encodings for adjusting the
stack pointer. It can just use the normal add-register-immediate encoding
since it can use all registers as a source, not just R0-R7. The extra
instruction definitions are just duplicates of the normal instructions with
the (not well enforced) constraint that the source register was SP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134114 91177308-0d34-0410-b5e6-96231b3b80d8
already makes the assumption, which is correct on ARM, that a type's alignment is
less than its alloc size. This improves codegen with Clang (which inserts a lot of
extraneous alignment specifiers) and fixes <rdar://problem/9695089>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134106 91177308-0d34-0410-b5e6-96231b3b80d8
The tSpill and tRestore instructions are just copies of the tSTRspi and
tLDRspi instructions, respectively. Just use those directly instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134092 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
When the destination operand is the same as the first source register
operand for arithmetic instructions, the destination operand may be omitted.
For example, the following two instructions are equivalent:
and r1, #ff
and r1, r1, #ff
rdar://9672867
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133973 91177308-0d34-0410-b5e6-96231b3b80d8
Correctly parse the forms of the Thumb mov-immediate instruction:
1. 8-bit immediate 0-255.
2. 12-bit shifted-immediate.
The 16-bit immediate "movw" form is also legal with just a "mov" mnemonic,
but is not yet supported. More parser logic necessary there due to fixups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133966 91177308-0d34-0410-b5e6-96231b3b80d8
Thumb2 MOV mnemonic can accept both cc_out and predication. We don't (yet)
encode the instruction properly, but this gets the parsing part.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133945 91177308-0d34-0410-b5e6-96231b3b80d8
Add aliases for the vpush/vpop mnemonics to the VFP load/store multiple
writeback instructions w/ SP as the base pointer.
rdar://9683231
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133932 91177308-0d34-0410-b5e6-96231b3b80d8
When the destination operand is the same as the first source register
operand for arithmetic instructions, the destination operand may be omitted.
For example, the following two instructions are equivalent:
sub r2, r2, #6
sub r2, #6
rdar://9682597
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133925 91177308-0d34-0410-b5e6-96231b3b80d8
Move the target-specific RecordRelocation logic out of the generic MC
MachObjectWriter and into the target-specific object writers. This allows
nuking quite a bit of target knowledge from the supposedly target-independent
bits in lib/MC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133844 91177308-0d34-0410-b5e6-96231b3b80d8
The fixup value comes in as the whole 32-bit value, so for the lo16 fixup,
the upper bits need to be masked off. Previously we assumed the masking had
already been done and asserted.
rdar://9635991
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133818 91177308-0d34-0410-b5e6-96231b3b80d8
instructions can be used to match combinations of multiply/divide and VCVT
(between floating-point and integer, Advanced SIMD). Basically the VCVT
immediate operand that specifies the number of fraction bits corresponds to a
floating-point multiply or divide by the corresponding power of 2.
For example, VCVT (floating-point to fixed-point, Advanced SIMD) can replace a
combination of VMUL and VCVT (floating-point to integer) as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vmul.f32 d16, d17, d16
vcvt.s32.f32 d16, d16
becomes:
vcvt.s32.f32 d16, d16, #3
Similarly, VCVT (fixed-point to floating-point, Advanced SIMD) can replace a
combinations of VCVT (integer to floating-point) and VDIV as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vcvt.f32.s32 d16, d16
vdiv.f32 d16, d17, d16
becomes:
vcvt.f32.s32 d16, d16, #3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133813 91177308-0d34-0410-b5e6-96231b3b80d8
target machine from those that are only needed by codegen. The goal is to
sink the essential target description into MC layer so we can start building
MC based tools without needing to link in the entire codegen.
First step is to refactor TargetRegisterInfo. This patch added a base class
MCRegisterInfo which TargetRegisterInfo is derived from. Changed TableGen to
separate register description from the rest of the stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133782 91177308-0d34-0410-b5e6-96231b3b80d8
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133503 91177308-0d34-0410-b5e6-96231b3b80d8
Also switch the return type to ArrayRef<unsigned> which works out nicely
for ARM's implementation of this function because of the clever ArrayRef
constructors.
The name change indicates that the returned allocation order may contain
reserved registers as has been the case for a while.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133216 91177308-0d34-0410-b5e6-96231b3b80d8
This is intended to support using REG_SEQUENCE SDNode's with type MVT::untyped, and is part of the long road to eliminating some of the hacks we currently use to support register pairs and other strange constraints, particularly on ARM NEON.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133178 91177308-0d34-0410-b5e6-96231b3b80d8
accumulator forwarding. Specifically (from SVN log entry):
Distribute (A + B) * C to (A * C) + (B * C) to make use of NEON multiplier
accumulator forwarding:
vadd d3, d0, d1
vmul d3, d3, d2
=>
vmul d3, d0, d2
vmla d3, d1, d2
Make sure it catches cases where operand 1 is add/fadd/sub/fsub, which was
intended in the original revision.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133127 91177308-0d34-0410-b5e6-96231b3b80d8
This simplifies many of the target description files since it is common
for register classes to be related or contain sequences of numbered
registers.
I have verified that this doesn't change the files generated by TableGen
for ARM and X86. It alters the allocation order of MBlaze GPR and Mips
FGR32 registers, but I believe the change is benign.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133105 91177308-0d34-0410-b5e6-96231b3b80d8
the bits being cleared by the AND are not demanded by the BFI.
The previous BFI dag combine rule was actually incorrect (or used to be
correct until BFI representation changed).
rdar://9609030
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133034 91177308-0d34-0410-b5e6-96231b3b80d8
The logic for reserving R4 for use as a scratch needs to match that for
actually using it. Also, it's not necessary for immediate <=508, so adjust
the value checked.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132934 91177308-0d34-0410-b5e6-96231b3b80d8
causing an assertion failure downstream. This fixes <rdar://problem/9562908>.
This really seems like it should always be set at CCState creation time, so mistakes like
this can never happen. I'll take a look at doing that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132811 91177308-0d34-0410-b5e6-96231b3b80d8
addressing mode problem mentioned in r132559.
Backend part of rdar://9037836 and part of rdar://9119939
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132561 91177308-0d34-0410-b5e6-96231b3b80d8
must be encoded decremented by one. Only add encoding tests for ssat16
because ssat can't be parsed yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132324 91177308-0d34-0410-b5e6-96231b3b80d8
This is important for the correct lowering of unwind instructions
(which doesn't matter at all) and llvm.eh.resume calls (which does).
Take 2, now with more basic competence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132295 91177308-0d34-0410-b5e6-96231b3b80d8
This is important for the correct lowering of unwind instructions
(which doesn't matter at all) and llvm.eh.resume calls (which does).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132291 91177308-0d34-0410-b5e6-96231b3b80d8
to load/store i64 values. Since there's no current support to explicitly
declare such restrictions, implement it by using specific hardcoded register
pairs during isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132248 91177308-0d34-0410-b5e6-96231b3b80d8
register allocation dependent and will occasionally break. WIP in the
register allocator to model paired/etc registers.
rdar://9119939
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132242 91177308-0d34-0410-b5e6-96231b3b80d8
mode (only the "mov.w" variant). Now, when parsing "mov" in thumb mode,
default to the Thumb 1 versions/encodings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132233 91177308-0d34-0410-b5e6-96231b3b80d8
The practical effects here are that x86-64 fast-isel can now handle trunc from i8 to i1, and ARM fast-isel can handle many more constructs involving integers narrower than 32 bits (including loads, stores, and many integer casts).
rdar://9437928 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132099 91177308-0d34-0410-b5e6-96231b3b80d8
Modified the patch to .td file supplied by Jyun-Yan You. Add a test case and
modified ARMDisassemblerCore.cpp a little bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131859 91177308-0d34-0410-b5e6-96231b3b80d8
text section.
Assume the following bit of annotated assembly:
.section .data.rel.ro,"aw",%progbits
.align 2
.LAlpha:
.long startval(GOTOFF)
.text
.align 2
.type main,%function
.align 4
main: ;;; assume "main" starts at offset 0x20
0x0 push {r11, lr}
0x4 movw r0, :lower16:(.LAlpha-(.LBeta+8))
;;; ==> (.AddrOf(.LAlpha) - ((.AddrOf(.LBeta) - .AddrOf(".")) + 8)
;;; ==> (??? - ((16-4) + 8) = -20
0x8 movt r0, :upper16:(.LAlpha-(.LBeta+8))
;;; ==> (.AddrOf(.LAlpha) - ((.AddrOf(.LBeta) - .AddrOf(".")) + 8)
;;; ==> (??? - ((16-8) + 8) = -16
0xc ... blah
.LBeta:
0x10 add r0, pc, r0
0x14 ... blah
.LGamma:
0x18 add r1, pc, r1
Above snippet results in the following relocs in the .o file for the
first pair of movw/movt instructions
00000024 R_ARM_MOVW_PREL_NC .LAlpha
00000028 R_ARM_MOVT_PREL .LAlpha
And the encoded instructions in the .o file for main: must be
00000020 <main>:
20: e92d4800 push {fp, lr}
24: e30f0fec movw r0, #65516 ; 0xffec i.e. -20
28: e34f0ff0 movt r0, #65520 ; 0xfff0 i.e. -16
However, llc (prior to this commit) generates the following sequence
00000020 <main>:
20: e92d4800 push {fp, lr}
24: e30f0fec movw r0, #65516 ; 0xffec - i.e. -20
28: e34f0fff movt r0, #65535 ; 0xffff - i.e. -1
What has to happen in the ArmAsmBackend is that if the relocation is PC
relative, the 16 bits encoded as part of movw and movt must be both addends,
not addresses. It makes sense to encode addresses by right shifting the value
by 16, but the result is incorrect for PIC.
i.e., the right shift by 16 for movt is ONLY valid for the NON-PCRel case.
This change agrees with what GNU as does, and makes the PIC code run.
MC/ARM/elf-movt.s covers this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131674 91177308-0d34-0410-b5e6-96231b3b80d8
("T is 1 if the target symbol S has type STT_FUNC and the
symbol addresses a Thumb instruction ;it is 0 otherwise."
from "ELF for the ARM Architecture" 4.7.1.2)
Patch by Koan-Sin Tan!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131406 91177308-0d34-0410-b5e6-96231b3b80d8
intrinsic call. This prevents it from being reordered so that it appears
*before* the setjmp intrinsic (thus making it completely useless).
<rdar://problem/9409683>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131174 91177308-0d34-0410-b5e6-96231b3b80d8
DWARF stuff also gets fixed up by ELFARMAsmBackend::ApplyFixup(),
but the offset is not guaranteed to be mod 4 == 0 as in text/data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131137 91177308-0d34-0410-b5e6-96231b3b80d8
LiveVariables doesn't understand that clobbering D0 and D1 completely overwrites
Q0, so if Q0 is live-in to a function, its live range will extend beyond a
function call that only clobbers D0 and D1. This shows up in the
ARM/2009-11-01-NeonMoves test case.
LiveVariables should probably implement the much stricter rules for physreg
liveness that RAFast imposes - a physreg is killed by the first use of any
alias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130801 91177308-0d34-0410-b5e6-96231b3b80d8
model constants which can be added to base registers via add-immediate
instructions which don't require an additional register to materialize
the immediate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130743 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a rather obscure crash caused by ARM fast-isel generating code which redefines a register.
rdar://problem/9338332 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130539 91177308-0d34-0410-b5e6-96231b3b80d8
The hook will be used by the register allocator when recomputing register
classes after removing constraints.
Thumb1 code doesn't allow anything larger than tGPR, and x86 needs to ensure
that the spill size doesn't change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130228 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes Thumb2 ADCS and SBCS lowering: <rdar://problem/9275821>.
t2ADCS/t2SBCS are now pseudo instructions, consistent with ARM, so the
assembly printer correctly prints the 's' suffix.
Fixes Thumb2 adde -> SBC matching to check for live/dead carry flags.
Fixes the internal ARM machine opcode mnemonic for ADCS/SBCS.
Fixes ARM SBC lowering to check for live carry (potential bug).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130048 91177308-0d34-0410-b5e6-96231b3b80d8
add <rd>, sp, #<imm8>
ldr <rd>, [sp, #<imm8>]
When the offset from sp is multiple of 4 and in range of 0-1020.
This saves code size by utilizing 16-bit instructions.
rdar://9321541
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129971 91177308-0d34-0410-b5e6-96231b3b80d8