produces a 32-bit immediate which is consumed by the use. It tries to
fold the immediate by breaking it into two parts and fold them into the
immmediate fields of two uses. e.g
movw r2, #40885
movt r3, #46540
add r0, r0, r3
=>
add.w r0, r0, #3019898880
add.w r0, r0, #30146560
;
However, this transformation is incorrect if the user produces a flag. e.g.
movw r2, #40885
movt r3, #46540
adds r0, r0, r3
=>
add.w r0, r0, #3019898880
adds.w r0, r0, #30146560
Note the adds.w may not set the carry flag even if the original sequence
would.
rdar://11116189
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153484 91177308-0d34-0410-b5e6-96231b3b80d8
ARMBaseRegisterInfo::canRealignStack was checking for variable-sized objects
but not for stack adjustments around calls. Use hasReservedCallFrame() to
check for both. The hasBasePointer function was already correctly checking
both conditions, so the effect of this was that a base pointer would be used
without checking whether the base pointer register could be reserved. I don't
have a small testcase for this.
<rdar://problem/11075906>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153110 91177308-0d34-0410-b5e6-96231b3b80d8
ARMFrameLowering::hasReservedCallFrame is already checking for variable
sized objects, so there's no point in checking it twice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153109 91177308-0d34-0410-b5e6-96231b3b80d8
fast-isel before emitting code. If the program bails after code was emitted,
then it could lead to the stack being adjusted more than once (two
CALLSEQ_BEGINs emitted) but being adjuste back only once after the call. This
leads to general badness and gnashing of teeth.
<rdar://problem/11050630>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152959 91177308-0d34-0410-b5e6-96231b3b80d8
It's not a good style idea, as the registers will be laid down in memory in
numerical order, not the order they're in the list, but it's legal. vldm/vstm
are stricter.
rdar://11064740
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152943 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM code generator makes aggressive assumptions about the encodings
being selected for branches which MCRelaxAll invalidates.
rdar://11006355
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152268 91177308-0d34-0410-b5e6-96231b3b80d8
condition flags to CPSR. This allows us to simplify SelectCmp.
Patch by Zonr Chang <zonr.xchg@gmail.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152243 91177308-0d34-0410-b5e6-96231b3b80d8
When an instruction only writes sub-registers, it is still necessary to
add an <imp-def> operand for the super-register. When reloading into a
virtual register, rewriting will add the operand, but when loading
directly into a virtual register, the <imp-def> operand is still
necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152095 91177308-0d34-0410-b5e6-96231b3b80d8
The fpscr register contains both flags (set by FP operations/comparisons) and
control bits. The control bits (FPSCR) should be reserved, since they're always
available and needn't be defined before use. The flag bits (FPSCR_NZCV) should
like to be unreserved so they can be hoisted by MachineCSE. This fixes PR12165.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152076 91177308-0d34-0410-b5e6-96231b3b80d8
With the new composite physical registers to represent arbitrary pairs
of DPR registers, we don't need the pseudo-registers anymore. Get rid of
a bunch of them that use DPR register pairs and just use the real
instructions directly instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152045 91177308-0d34-0410-b5e6-96231b3b80d8
In this update:
- I assumed neon2 does not imply vfpv4, but neon and vfpv4 imply neon2.
- I kept setting .fpu=neon-vfpv4 code attribute because that is what the
assembler understands.
Patch by Ana Pazos <apazos@codeaurora.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152036 91177308-0d34-0410-b5e6-96231b3b80d8
MachineOperands that define part of a virtual register must have an
<undef> flag if they are not intended as read-modify-write operands.
The old trick of adding an <imp-def> operand doesn't work any longer.
Fixes PR12177.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152008 91177308-0d34-0410-b5e6-96231b3b80d8
floating point equality comparisons into integer ones with -ffast-math. The
issue is the optimization causes +0.0 != -0.0.
Now the optimization is only done when one side is known to be 0.0. The other
side's sign bit is masked off for the comparison.
rdar://10964603
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151861 91177308-0d34-0410-b5e6-96231b3b80d8
This function could have r12 live across a function call when compiling
thumb1 code.
The test case for this is not included because it is very long. It must
provoke emergency spilling near a function call. The behavior is
provoked by MultiSource/Applications/JM/lencod, and it triggers an
assertion in the scavenger.
<rdar://problem/10963642>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151855 91177308-0d34-0410-b5e6-96231b3b80d8
Without this hook, functions w/ a completely empty body (including no
epilogue) will cause an MCEmitter assertion failure.
For example,
define internal fastcc void @empty_function() {
unreachable
}
rdar://10947471
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151673 91177308-0d34-0410-b5e6-96231b3b80d8
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151623 91177308-0d34-0410-b5e6-96231b3b80d8
When an outgoing call takes more than 2k of arguments on the stack, we
don't allocate that call frame in the prolog, but adjust the stack
pointer immediately before the call instead.
This causes problems with the emergency spill slot because PEI can't
track stack pointer adjustments on the second pass, and if the outgoing
arguments are too big, SP can't be used to reach the emergency spill
slot at all.
Work around these problems by ensuring there is a base or frame pointer
that can be used to access the emergency spill slot.
<rdar://problem/10917166>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151604 91177308-0d34-0410-b5e6-96231b3b80d8
We on the linker to resolve calls to the appropriate BL/BLX instruction
to make interworking function correctly. It uses the symbol in the
relocation to do that, so we need to be careful about being too clever.
To enable this for ARM mode, split the BL/BLX fixup kind off from the
unconditional-branch fixups.
rdar://10927209
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151571 91177308-0d34-0410-b5e6-96231b3b80d8
I'll let the buildbots determine the compile time improvements from this
change, but 464.h264ref has 5% faster codegen at -O2.
This patch does cause some assembly changes. Branch folding can make
different decisions about calls with dead return values.
CriticalAntiDepBreaker may choose different registers because its
liveness tracking is affected. MachineCopyPropagation may sometimes
leave a dead copy behind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151331 91177308-0d34-0410-b5e6-96231b3b80d8
The tied source operand of tMUL is the second source operand, not the
first like every other two-address thumb instruction. Special case it
in the size reduction pass to make sure we create the tMUL instruction
properly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151315 91177308-0d34-0410-b5e6-96231b3b80d8
bits of the value carying the boolean condition, as their contents
are undefined. This fixes rdar://10887484.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151310 91177308-0d34-0410-b5e6-96231b3b80d8
rdar://10873652
As part of this I updated the llvm-mc disassembler C API to always call the
SymbolLookUp call back even if there is no getOpInfo call back. If there is a
getOpInfo call back that is tried first and then if that gets no information
then the SymbolLookUp is called. I also made the code more robust by
memset(3)'ing to zero the LLVMOpInfo1 struct before then setting
SymbolicOp.Value before for the call to getOpInfo. And also don't use any
values from the LLVMOpInfo1 struct if getOpInfo returns 0. And also don't
use any of the ReferenceType or ReferenceName values from SymbolLookUp if it
returns NULL. rdar://10873563 and rdar://10873683
For the X86 target also fixed bugs so the annotations get printed.
Also fixed a few places in the ARM target that was not producing symbolic
operands for some instructions. rdar://10878166
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151267 91177308-0d34-0410-b5e6-96231b3b80d8
value is zero. Instead of a cmov + op, issue an conditional op instead. e.g.
cmp r9, r4
mov r4, #0
moveq r4, #1
orr lr, lr, r4
should be:
cmp r9, r4
orreq lr, lr, #1
That is, optimize (or x, (cmov 0, y, cond)) to (or.cond x, y). Similarly extend
this to xor as well as (and x, (cmov -1, y, cond)) => (and.cond x, y).
It's possible to extend this to ADD and SUB but I don't think they are common.
rdar://8659097
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151224 91177308-0d34-0410-b5e6-96231b3b80d8
Even if a call instruction has %SP<imp-def> operands, it doesn't change
the value of the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151104 91177308-0d34-0410-b5e6-96231b3b80d8
Teach TargetSelectionDAG about lengthening loads for vector types and set v4i8 as legal. Allow FP_TO_UINT for v4i16 from v4i32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150956 91177308-0d34-0410-b5e6-96231b3b80d8
The c'tor list is stored as a list of 'void ()*'s, so all of the functions are
bitcast to that. However, the dyn_cast doesn't automagically look through
bitcasts. Do that for it.
<rdar://problem/10813350>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150572 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the clang driver passes the CPU and feature information to
the backend when processing assembly files (150273), this isn't necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150274 91177308-0d34-0410-b5e6-96231b3b80d8
Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.
While cleaning up declarations, cleaned up comments (sorry for large diff).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150100 91177308-0d34-0410-b5e6-96231b3b80d8
load / store) if the ADD / SUB has a live definition of CPSR.
Bug reported by David Meyer. Alas, no test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149970 91177308-0d34-0410-b5e6-96231b3b80d8
This CL delays reading of function bodies from initial parse until
materialization, allowing overlap of compilation with bitcode download.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149918 91177308-0d34-0410-b5e6-96231b3b80d8
Passes prior to instructon selection are now split into separate configurable stages.
Header dependencies are simplified.
The bulk of this diff is simply removal of the silly DisableVerify flags.
Sorry for the target header churn. Attempting to stabilize them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149754 91177308-0d34-0410-b5e6-96231b3b80d8
Allows command line overrides to be centralized in LLVMTargetMachine.cpp.
LLVMTargetMachine can intercept common passes and give precedence to command line overrides.
Allows adding "internal" target configuration options without touching TargetOptions.
Encapsulates the PassManager.
Provides a good point to initialize all CodeGen passes so that Pass ID's can be used in APIs.
Allows modifying the target configuration hooks without rebuilding the world.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149672 91177308-0d34-0410-b5e6-96231b3b80d8
NEON loads and stores accept single and double spaced pairs, triples,
and quads of D registers. This patch adds new register classes to
accurately model those constraints:
Dn, Dn+1 Dn, Dn+2
----------------------
DPair DPairSpc
DTriple DTripleSpc
DQuad DQuadSpc
Also extend the existing QQ and QQQQ register classes to contains all Q
pairs and quads instead of just the aligned ones.
These new register classes will make it possible to accurately model
constraints on NEON loads and stores, and we can get rid of all the NEON
pseudo-instructions. The late scheduler will be able to accurately
model instruction dependencies from the explicit operands.
This more than doubles the number of ARM registers, but the backend
passes are quite good at handling this. The llc -O0 compile time only
regresses by 1.5%. Future work on register mask operands will recover
this regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149640 91177308-0d34-0410-b5e6-96231b3b80d8
Adjust an example MachObjectWriter diagnostic to use the information
to issue a better message.
Before:
LLVM ERROR: unknown ARM fixup kind!
After:
x.s:6:5: error: unsupported relocation on symbol
beq bar
^
rdar://9800182
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149093 91177308-0d34-0410-b5e6-96231b3b80d8
This enables the linker to match concrete relocation types (absolute or relative) with whatever library or C++ support code is being linked against.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149057 91177308-0d34-0410-b5e6-96231b3b80d8
"Although a Thumb2 instruction, the IT mnemonic shall be permitted in
ARM mode, and the condition verified to match the condition code(s)
on the following instruction(s)."
PR11853
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148969 91177308-0d34-0410-b5e6-96231b3b80d8
violation -- MC cannot depend on CodeGen.
Specifically, the MCTargetDesc component of each target is actually
a subcomponent of the MC library. As such, it cannot depend on the
target-independent code generator, because MC itself cannot depend on
the target-independent code generator. This change moved a flag from the
ARM MCTargetDesc file ARMMCAsmInfo.cpp to the CodeGen layer in
ARMException.cpp, leaving behind an 'extern' to refer back to it. That
layering order isn't viable givin the constraints outlined above.
Commandline flags are designed to be static specifically to avoid these
types of bugs.
Fixing this is likely going to require some non-trivial refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148759 91177308-0d34-0410-b5e6-96231b3b80d8
Let the generic token alias definitions handle the data subtype
suffices. We don't need explicit versions for each.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148718 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds an new value to the --arm-enable-ehabi option that
disables emitting unwinding descriptors. This mode gives a working
backtrace() without the (currently broken) exception support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148686 91177308-0d34-0410-b5e6-96231b3b80d8
We have patterns for vector sext and zext operations but were missing
anyext. Without those patterns, codegen will fail when the selection DAG
has any_extend nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148568 91177308-0d34-0410-b5e6-96231b3b80d8
For bit patterns that aren't representable using the 8-bit floating point
representation for vmov.f32, but are representable via vmov.i32, treat
the .f32 syntax as an alias. Most importantly, this covers the case
'vmov.f32 Vd, #0.0'.
rdar://10616677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148556 91177308-0d34-0410-b5e6-96231b3b80d8
to instruction right after the last instruction in the bundle.
- Add a finalizeBundle() variant that doesn't specify LastMI. Instead, the code
will find the last instruction in the bundle by following the 'InsideBundle'
marker. This is useful in case bundles are formed early (i.e. during MI
scheduling) but finalized later (i.e. after register allocator has finished
rewriting virtual registers with physical registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148444 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to implicit register operands. MC doesn't understand
register liveness and call clobbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148437 91177308-0d34-0410-b5e6-96231b3b80d8
If the fixup is out of range for the Thumb1 instruction, relax it
to the Thumb2 encoding instead.
rdar://10711829
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148424 91177308-0d34-0410-b5e6-96231b3b80d8
Load/store instructions w/ a fixup to be relative a function marked as thumb
don't use the low bit to specify thumb vs. non-thumb like interworking
branches do, so don't set it when dealing with those fixups.
rdar://10348687.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148366 91177308-0d34-0410-b5e6-96231b3b80d8
When set, this bit indicates that a register is completely defined by
the value of its sub-registers.
Use the CoveredBySubRegs property to infer which super-registers are
call-preserved given a list of callee-saved registers. For example, the
ARM registers D8-D15 are callee-saved. This now automatically implies
that Q4-Q7 are call-preserved.
Conversely, Win64 callees save XMM6-XMM15, but the corresponding
YMM6-YMM15 registers are not call-preserved because they are not fully
defined by their sub-registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148363 91177308-0d34-0410-b5e6-96231b3b80d8
(This time I believe I've checked all the -Wreturn-type warnings from GCC & added the couple of llvm_unreachables necessary to silence them. If I've missed any, I'll happily fix them as soon as I know about them)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148262 91177308-0d34-0410-b5e6-96231b3b80d8
live across BBs before register allocation. This miscompiled 197.parser
when a cmp + b are optimized to a cbnz instruction even though the CPSR def
is live-in a successor.
cbnz r6, LBB89_12
...
LBB89_12:
ble LBB89_1
The fix consists of two parts. 1) Teach LiveVariables that some unallocatable
registers might be liveouts so don't mark their last use as kill if they are.
2) ARM constantpool island pass shouldn't form cbz / cbnz if the conditional
branch does not kill CPSR.
rdar://10676853
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148168 91177308-0d34-0410-b5e6-96231b3b80d8
The QQ and QQQQ registers are not 'real', they are pseudo-registers used
to model some vld and vst instructions.
This makes the call clobber lists longer, but I intend to get rid of
those soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148151 91177308-0d34-0410-b5e6-96231b3b80d8