Now debug_inlined section is covered by TAI->doesDwarfUsesInlineInfoSection(), which is false by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68964 91177308-0d34-0410-b5e6-96231b3b80d8
This will be used to replace things like X86's MOV32to32_.
Enhance ScheduleDAGSDNodesEmit to be more flexible and robust
in the presense of subregister superclasses and subclasses. It
can now cope with the definition of a virtual register being in
a subclass of a use.
Re-introduce the code for recording register superreg classes and
subreg classes. This is needed because when subreg extracts and
inserts get coalesced away, the virtual registers are left in
the correct subclass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68961 91177308-0d34-0410-b5e6-96231b3b80d8
Create debug_inlined dwarf section using these information. This info is used by gdb, at least on Darwin, to enable better experience debugging inlined functions. See DwarfWriter.cpp for more information on structure of debug_inlined section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68847 91177308-0d34-0410-b5e6-96231b3b80d8
register destinations that are tied to source operands. The
TargetInstrDescr::findTiedToSrcOperand method silently fails for inline
assembly. The existing MachineInstr::isRegReDefinedByTwoAddr was very
close to doing what is needed, so this revision makes a few changes to
that method and also renames it to isRegTiedToUseOperand (for consistency
with the very similar isRegTiedToDefOperand and because it handles both
two-address instructions and inline assembly with tied registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68714 91177308-0d34-0410-b5e6-96231b3b80d8
with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce
SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG
instructions), and teach the DAGCombiner to take advantage of this on
targets which support it. This eliminates many redundant
zero-extension operations on x86-64.
This adds a new TargetLowering hook, isZExtFree. It's similar to
isTruncateFree, except it only applies to actual definitions, and not
no-op truncates which may not zero the high bits.
Also, this adds a new optimization to SimplifyDemandedBits: transform
operations like x+y into (zext (add (trunc x), (trunc y))) on targets
where all the casts are no-ops. In contexts where the high part of the
add is explicitly masked off, this allows the mask operation to be
eliminated. Fix the DAGCombiner to avoid undoing these transformations
to eliminate casts on targets where the casts are no-ops.
Also, this adds a new two-address lowering heuristic. Since
two-address lowering runs before coalescing, it helps to be able to
look through copies when deciding whether commuting and/or
three-address conversion are profitable.
Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle
the case that a clobber range extended both before and beyond an
existing live range. In that case, multiple live ranges need to be
added. This was exposed by the new subreg coalescing code.
Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the
spiller behavior it was looking for no longer occurrs with the new
instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
When compiling in Thumb mode, only the low (R0-R7) registers are available
for most instructions. Breaking the low registers into a new register class
handles this. Uses of R12, SP, etc, are handled explicitly where needed
with copies inserted to move results into low registers where the rest of
the code generator can deal with them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68545 91177308-0d34-0410-b5e6-96231b3b80d8
Note that these are distinct from TargetInstrInfo::INSERT_SUBREG
and TargetInstrInfo::EXTRACT_SUBREG, which are used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68355 91177308-0d34-0410-b5e6-96231b3b80d8
x * 40
=>
shlq $3, %rdi
leaq (%rdi,%rdi,4), %rax
This has the added benefit of allowing more multiply to be folded into addressing mode. e.g.
a * 24 + b
=>
leaq (%rdi,%rdi,2), %rax
leaq (%rsi,%rax,8), %rax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67917 91177308-0d34-0410-b5e6-96231b3b80d8
that has not been JIT'd yet, the callee is put on a list of pending functions
to JIT. The call is directed through a stub, which is updated with the address
of the function after it has been JIT'd. A new interface for allocating and
updating empty stubs is provided.
Add support for removing the ModuleProvider the JIT was created with, which
would otherwise invalidate the JIT's PassManager, which is initialized with the
ModuleProvider's Module.
Add support under a new ExecutionEngine flag for emitting the infomration
necessary to update Function and GlobalVariable stubs after JITing them, by
recording the address of the stub and the name of the GlobalValue. This allows
code to be copied from one address space to another, where libraries may live
at different virtual addresses, and have the stubs updated with their new
correct target addresses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64906 91177308-0d34-0410-b5e6-96231b3b80d8
suprise to some callers, e.g. register coalescer. For now, add an parameter
that tells AnalyzeBranch whether it's safe to modify the mbb. A better
solution is out there, but I don't have time to deal with it right now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64124 91177308-0d34-0410-b5e6-96231b3b80d8
target directories themselves. This also means that VMCore no longer
needs to know about every target's list of intrinsics. Future work
will include converting the PowerPC target to this interface as an
example implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63765 91177308-0d34-0410-b5e6-96231b3b80d8
dagcombines that help it match in several more cases. Add
several more cases to test/CodeGen/X86/bt.ll. This doesn't
yet include matching for BT with an immediate operand, it
just covers more register+register cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63266 91177308-0d34-0410-b5e6-96231b3b80d8
new isOperationLegalOrCustom, which does what isOperationLegal
previously did.
Update a bunch of callers to use isOperationLegalOrCustom
instead of isOperationLegal. In some case it wasn't obvious
which behavior is desired; when in doubt I changed then to
isOperationLegalOrCustom as that preserves their previous
behavior.
This is for the second half of PR3376.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63212 91177308-0d34-0410-b5e6-96231b3b80d8
doesn't support it. The default is set to 'true', so this should not
impact any other target backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63058 91177308-0d34-0410-b5e6-96231b3b80d8
Split Support/Registry.h into two files so that we have less to
recompile every time CommandLine.h is changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62312 91177308-0d34-0410-b5e6-96231b3b80d8
own OpActionsCapacity magic number; it can just use ISD::BUILTIN_OP_END,
as long as it takes care to round up when needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61733 91177308-0d34-0410-b5e6-96231b3b80d8
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61542 91177308-0d34-0410-b5e6-96231b3b80d8
This removes all the _8, _16, _32, and _64 opcodes and replaces each
group with an unsuffixed opcode. The MemoryVT field of the AtomicSDNode
is now used to carry the size information. In tablegen, the size-specific
opcodes are replaced by size-independent opcodes that utilize the
ability to compose them with predicates.
This shrinks the per-opcode tables and makes the code that handles
atomics much more concise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61389 91177308-0d34-0410-b5e6-96231b3b80d8
The EH_frame and .eh symbols are now private, except for darwin9 and earlier.
The patch also fixes the definition of PrivateGlobalPrefix on pcc linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61242 91177308-0d34-0410-b5e6-96231b3b80d8
target-independent way of determining overflow on multiplication. It's very
tricky. Patch by Zoltan Varga!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60800 91177308-0d34-0410-b5e6-96231b3b80d8
AND. This is speedup on any reasonable target, but particularly
on 32-bit targets where this often turns into a libcall like udivdi3.
We know that alignments are a power of two but the compiler doesn't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60688 91177308-0d34-0410-b5e6-96231b3b80d8
foldMemoryOperand how to "fold" them, by converting them into constant-pool
loads. When they aren't folded, they use xorps/cmpeqd, but for example when
register pressure is high, they may now be folded as memory operands, which
reduces register pressure.
Also, mark V_SET0 isAsCheapAsAMove so that two-address-elimination will
remat it instead of copying zeros around (V_SETALLONES was already marked).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60461 91177308-0d34-0410-b5e6-96231b3b80d8
ReplaceNodeResults: rather than returning a node which
must have the same number of results as the original
node (which means mucking around with MERGE_VALUES,
and which is also easy to get wrong since SelectionDAG
folding may mean you don't get the node you expect),
return the results in a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60348 91177308-0d34-0410-b5e6-96231b3b80d8
(this doesn't happen that often, since most code
does not use illegal types) then follow it by a
DAG combiner run that is allowed to generate
illegal operations but not illegal types. I didn't
modify the target combiner code to distinguish like
this between illegal operations and illegal types,
so it will not produce illegal operations as well
as not producing illegal types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59960 91177308-0d34-0410-b5e6-96231b3b80d8
some of the latency computation logic out of the SDNode
ScheduleDAG code into a TargetInstrItineraries helper method
to help with this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59761 91177308-0d34-0410-b5e6-96231b3b80d8
(actually, code already all worked, only the comment
changed). Use this to implement 'A' constraint on x86.
Fixes PR 1779.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59266 91177308-0d34-0410-b5e6-96231b3b80d8
This is a short term workaround. The current solution is for the JIT memory manager to manage code and data memory separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58688 91177308-0d34-0410-b5e6-96231b3b80d8
Since the ARM constant pool handling supercedes the standard LLVM constant
pool entirely, the JIT emitter does not allocate space for the constants,
nor initialize the memory. The constant pool is considered part of the
instruction stream.
Likewise, when resolving relocations into the constant pool, a hook into
the target back end is used to resolve from the constant ID# to the
address where the constant is stored.
For now, the support in the ARM emitter is limited to 32-bit integer. Future
patches will expand this to the full range of constants necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58338 91177308-0d34-0410-b5e6-96231b3b80d8
variable is moved to the execution engine. The JIT calls the TargetJITInfo
to allocate thread local storage. Currently, only linux/x86 knows how to
allocate thread local global variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58142 91177308-0d34-0410-b5e6-96231b3b80d8
sensible for vectors being scalarized. Note
that this method can't return anything very
sensible when splitting non-power-of-two vectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57839 91177308-0d34-0410-b5e6-96231b3b80d8
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57748 91177308-0d34-0410-b5e6-96231b3b80d8
array. Improve some minor comments, refactor some helpers in
AsmOperandInfo. No functionality change for valid code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57686 91177308-0d34-0410-b5e6-96231b3b80d8
i.e. conditions that cannot be checked with a single instruction. For example,
SETONE and SETUEQ on x86.
- Teach legalizer to implement *illegal* setcc as a and / or of a number of
legal setcc nodes. For now, only implement FP conditions. e.g. SETONE is
implemented as SETO & SETNE, SETUEQ is SETUO | SETEQ.
- Move x86 target over.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57542 91177308-0d34-0410-b5e6-96231b3b80d8
- Move the EH landing-pad code and adjust it so that it works
with FastISel as well as with SDISel.
- Add FastISel support for @llvm.eh.exception and
@llvm.eh.selector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57539 91177308-0d34-0410-b5e6-96231b3b80d8
`-fno-builtin' flag. Currently, it's used to replace "memset" with "_bzero"
instead of "__bzero" on Darwin10+. This arguably violates the meaning of this
flag, but is currently sufficient. The meaning of this flag should become more
specific over time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56885 91177308-0d34-0410-b5e6-96231b3b80d8
its size). Adjust various lowering functions to
pass this info through from CallInst. Use it to
implement sseregparm returns on X86. Remove
X86_ssecall calling convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56677 91177308-0d34-0410-b5e6-96231b3b80d8
a separate function, eliminating duplication between the
add-passes-for-file and add-passes-for-machine-code code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56599 91177308-0d34-0410-b5e6-96231b3b80d8
Currently it just holds the calling convention and flags
for isVarArgs and isTailCall.
And it has several utility methods, which eliminate magic
5+2*i and similar index computations in several places.
CallSDNodes are not CSE'd. Teach UpdateNodeOperands to handle
nodes that are not CSE'd gracefully.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56183 91177308-0d34-0410-b5e6-96231b3b80d8
UsedDirective for some symbols in llvm.used into
Darwin-specific code. I've decided LessPrivateGlobal
is potentially a useful abstraction and left it in
the target-independent area, with improved comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56024 91177308-0d34-0410-b5e6-96231b3b80d8
objects in llvm.used (thanks Anton). Makes visible
the magic 'l' prefix for symbols on Darwin which are
to be passed through the assembler, then removed at
linktime (previously all references to this had been
hidden in the ObjC FE code, oh well).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55973 91177308-0d34-0410-b5e6-96231b3b80d8
HandlePHINodesInSuccessorBlocks that works FastISel-style. This
allows PHI nodes to be updated correctly while using FastISel.
This also involves some code reorganization; ValueMap and
MBBMap are now members of the FastISel class, so they needn't
be passed around explicitly anymore. Also, SelectInstructions
is changed to SelectInstruction, and only does one instruction
at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55746 91177308-0d34-0410-b5e6-96231b3b80d8
ATOMIC_LOAD_ADD_{8,16,32,64} instead of ATOMIC_LOAD_ADD.
Increased the Hardcoded Constant OpActionsCapacity to match.
Large but boring; no functional change.
This is to support partial-word atomics on ppc; i8 is
not a valid type there, so by the time we get to lowering, the
ATOMIC_LOAD nodes looks the same whether the type was i8 or i32.
The information can be added to the AtomicSDNode, but that is the
largest SDNode; I don't fully understand the SDNode allocation,
but it is sensitive to the largest node size, so increasing
that must be bad. This is the alternative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55457 91177308-0d34-0410-b5e6-96231b3b80d8
was inserted or not. This allows bitcast in fast isel to properly handle the case
where an appropriate reg-to-reg copy is not available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55375 91177308-0d34-0410-b5e6-96231b3b80d8
class hold a MachineRegisterInfo member, and make the
MachineBasicBlock be passed in to SelectInstructions rather
than the FastISel constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55076 91177308-0d34-0410-b5e6-96231b3b80d8
- Add a basic machine-level dead block eliminator.
These two have to go together, since many other parts of the code generator are unable to handle the unreachable blocks otherwise created.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54333 91177308-0d34-0410-b5e6-96231b3b80d8
switches use the binary search algorithm) for
environments that don't support it. PPC64 JIT
is such an environment; turn the flag on for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54248 91177308-0d34-0410-b5e6-96231b3b80d8
difference in purpose of TargetInstrInfo and TargetInstrDesc,
which isn't immediately obvious from the name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53683 91177308-0d34-0410-b5e6-96231b3b80d8
hook for each way in which a result type can be
legalized (promotion, expansion, softening etc),
just use one: ReplaceNodeResults, which returns
a node with exactly the same result types as the
node passed to it, but presumably with a bunch of
custom code behind the scenes. No change if the
new LegalizeTypes infrastructure is not turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53137 91177308-0d34-0410-b5e6-96231b3b80d8
moves in order to get correct debug info. Since
I can't imagine how any target could possibly
be any different, I've just stripped out the
option: now all the world's like Darwin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53134 91177308-0d34-0410-b5e6-96231b3b80d8
Also, if LV isn't around, then TwoAddr doesn't need to be updating flags, since they won't have been set in the first place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53058 91177308-0d34-0410-b5e6-96231b3b80d8
- Use a more accurate heuristic for the size of the hashtable.
- Use bitwise and instead of modulo since the size is a power of two.
- Use new[] instead of malloc().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52951 91177308-0d34-0410-b5e6-96231b3b80d8
the need for a flavor operand, and add a new SDNode subclass,
LabelSDNode, for use with them to eliminate the need for a label id
operand.
Change instruction selection to let these label nodes through
unmodified instead of creating copies of them. Teach the MachineInstr
emitter how to emit a MachineInstr directly from an ISD label node.
This avoids the need for allocating SDNodes for the label id and
flavor value, as well as SDNodes for each of the post-isel label,
label id, and label flavor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52943 91177308-0d34-0410-b5e6-96231b3b80d8
SmallVectors. Change the signature of TargetLowering::LowerArguments
to avoid returning a vector by value, and update the two targets
which still use this directly, Sparc and IA64, accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52917 91177308-0d34-0410-b5e6-96231b3b80d8
<16 x float> is 64-byte aligned (for some reason),
which gets us into the stack realignment code. The
computation changing FP-relative offsets to SP-relative
was broken, assiging a spill temp to a location
also used for parameter passing. This
fixes it by rounding up the stack frame to a multiple
of the largest alignment (I concluded it wasn't fixable
without doing this, but I'm not very sure.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52750 91177308-0d34-0410-b5e6-96231b3b80d8
InvalidateInstructionCache method instead of calling through
a hook on the JIT. This is a host feature, not a target feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52734 91177308-0d34-0410-b5e6-96231b3b80d8
wrong for volatile loads and stores. In fact this
is almost all of them! There are three types of
problems: (1) it is wrong to change the width of
a volatile memory access. These may be used to
do memory mapped i/o, in which case a load can have
an effect even if the result is not used. Consider
loading an i32 but only using the lower 8 bits. It
is wrong to change this into a load of an i8, because
you are no longer tickling the other three bytes. It
is also unwise to make a load/store wider. For
example, changing an i16 load into an i32 load is
wrong no matter how aligned things are, since the
fact of loading an additional 2 bytes can have
i/o side-effects. (2) it is wrong to change the
number of volatile load/stores: they may be counted
by the hardware. (3) it is wrong to change a volatile
load/store that requires one memory access into one
that requires several. For example on x86-32, you
can store a double in one processor operation, but to
store an i64 requires two (two i32 stores). In a
multi-threaded program you may want to bitcast an i64
to a double and store as a double because that will
occur atomically, and be indivisible to other threads.
So it would be wrong to convert the store-of-double
into a store of an i64, because this will become two
i32 stores - no longer atomic. My policy here is
to say that the number of processor operations for
an illegal operation is undefined. So it is alright
to change a store of an i64 (requires at least two
stores; but could be validly lowered to memcpy for
example) into a store of double (one processor op).
In short, if the new store is legal and has the same
size then I say that the transform is ok. It would
also be possible to say that transforms are always
ok if before they were illegal, whether after they
are illegal or not, but that's more awkward to do
and I doubt it buys us anything much.
However this exposed an interesting thing - on x86-32
a store of i64 is considered legal! That is because
operations are marked legal by default, regardless of
whether the type is legal or not. In some ways this
is clever: before type legalization this means that
operations on illegal types are considered legal;
after type legalization there are no illegal types
so now operations are only legal if they really are.
But I consider this to be too cunning for mere mortals.
Better to do things explicitly by testing AfterLegalize.
So I have changed things so that operations with illegal
types are considered illegal - indeed they can never
map to a machine operation. However this means that
the DAG combiner is more conservative because before
it was "accidentally" performing transforms where the
type was illegal because the operation was nonetheless
marked legal. So in a few such places I added a check
on AfterLegalize, which I suppose was actually just
forgotten before. This causes the DAG combiner to do
slightly more than it used to, which resulted in the X86
backend blowing up because it got a slightly surprising
node it wasn't expecting, so I tweaked it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52254 91177308-0d34-0410-b5e6-96231b3b80d8
of apint codegen failure is the DAG combiner doing
the wrong thing because it was comparing MVT's using
< rather than comparing the number of bits. Removing
the < method makes this mistake impossible to commit.
Instead, add helper methods for comparing bits and use
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52098 91177308-0d34-0410-b5e6-96231b3b80d8
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8
instruction to execute. This can be used for transformations (like two-address
conversion) to remat an instruction instead of generating a "move"
instruction. The idea is to decrease the live ranges and register pressure and
all that jazz.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51660 91177308-0d34-0410-b5e6-96231b3b80d8
on x86-64 linux. This causes no regressions on
32 bit linux and 32 bit ppc. More tests pass
on 64 bit ppc with no regressions. I didn't
turn on eh on 64 bit linux because the intrinsics
needed to compile the eh runtime aren't done
yet. But if you turn it on and link with the
mainline runtime then eh seems to work fine
on x86-64 linux with this patch. Thanks to
Dale for testing. The main point of the patch
is that if you output that some object is
encoded using 4 bytes you had better not output
8 bytes for it: the patch makes everything
consistent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50825 91177308-0d34-0410-b5e6-96231b3b80d8
the code being generated does not require an executable stack.
Also, add target-specific code to make use of this on Linux
on x86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50634 91177308-0d34-0410-b5e6-96231b3b80d8
Move platform independent code (lowering of possibly overwritten
arguments, check for tail call optimization eligibility) from
target X86ISelectionLowering.cpp to TargetLowering.h and
SelectionDAGISel.cpp.
Initial PowerPC tail call implementation:
Support ppc32 implemented and tested (passes my tests and
test-suite llvm-test).
Support ppc64 implemented and half tested (passes my tests).
On ppc tail call optimization is performed if
caller and callee are fastcc
call is a tail call (in tail call position, call followed by ret)
no variable argument lists or byval arguments
option -tailcallopt is enabled
Supported:
* non pic tail calls on linux/darwin
* module-local tail calls on linux(PIC/GOT)/darwin(PIC)
* inter-module tail calls on darwin(PIC)
If constraints are not met a normal call will be emitted.
A test checking the argument lowering behaviour on x86-64 was added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50477 91177308-0d34-0410-b5e6-96231b3b80d8
When choosing between constraints with multiple options,
like "ir", test to see if we can use the 'i' constraint and
go with that if possible. This produces more optimal ASM in
all cases (sparing a register and an instruction to load it),
and fixes inline asm like this:
void test () {
asm volatile (" %c0 %1 " : : "imr" (42), "imr"(14));
}
Previously we would dump "42" into a memory location (which
is ok for the 'm' constraint) which would cause a problem
because the 'c' modifier is not valid on memory operands.
Isn't it great how inline asm turns 'missed optimization'
into 'compile failed'??
Incidentally, this was the todo in
PowerPC/2007-04-24-InlineAsm-I-Modifier.ll
Please do NOT pull this into Tak.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50315 91177308-0d34-0410-b5e6-96231b3b80d8
- Make targetlowering.h fit in 80 cols.
- Make LowerAsmOperandForConstraint const.
- Make lowerXConstraint -> LowerXConstraint
- Make LowerXConstraint return a const char* instead of taking a string byref.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50312 91177308-0d34-0410-b5e6-96231b3b80d8
stack tracebacks on Darwin x86-64 won't work by default;
nevertheless, everybody but me thinks this is a good idea.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49663 91177308-0d34-0410-b5e6-96231b3b80d8
on any current target and aren't optimized in DAGCombiner. Instead
of using intermediate nodes, expand the operations, choosing between
simple loads/stores, target-specific code, and library calls,
immediately.
Previously, the code to emit optimized code for these operations
was only used at initial SelectionDAG construction time; now it is
used at all times. This fixes some cases where rep;movs was being
used for small copies where simple loads/stores would be better.
This also cleans up code that checks for alignments less than 4;
let the targets make that decision instead of doing it in
target-independent code. This allows x86 to use rep;movs in
low-alignment cases.
Also, this fixes a bug that resulted in the use of rep;stos for
memsets of 0 with non-constant memory size when the alignment was
at least 4. It's better to use the library in this case, which
can be significantly faster when the size is large.
This also preserves more SourceValue information when memory
intrinsics are lowered into simple loads/stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49572 91177308-0d34-0410-b5e6-96231b3b80d8
Note: the coalescer will have to be careful about this too, when it starts coalescing insert_subreg nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48329 91177308-0d34-0410-b5e6-96231b3b80d8
that merely add passes. This allows them to be used with either
FunctionPassManager or PassManager, or even with a custom new
kind of pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48256 91177308-0d34-0410-b5e6-96231b3b80d8
return ValueType can depend its operands' ValueType.
This is a cosmetic change, no functionality impacted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48145 91177308-0d34-0410-b5e6-96231b3b80d8
For x86, if sse2 is available, it's not a good idea since cvtss2sd is slower than a movsd load and it prevents load folding. On x87, it's important to shrink fp constant since fldt is very expensive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47931 91177308-0d34-0410-b5e6-96231b3b80d8
generic & x86 versions; change generic to follow x86
and improve comments. Add PPC version (not right
for non-Darwin.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47734 91177308-0d34-0410-b5e6-96231b3b80d8
Change several cases in SimplifyDemandedMask that don't ever do any
simplifying to reuse the logic in ComputeMaskedBits instead of
duplicating it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47648 91177308-0d34-0410-b5e6-96231b3b80d8
%r3 on PPC) in their ASM files. However, it's hard for humans to read
during debugging. Adding a new field to the register data that lets you
specify a different name to be printed than the one that goes into the
ASM file -- %x3 instead of %r3, for instance.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47534 91177308-0d34-0410-b5e6-96231b3b80d8
the return value is zero-extended if it isn't
sign-extended. It may also be any-extended.
Also, if a floating point value was returned
in a larger floating point type, pass 1 as the
second operand to FP_ROUND, which tells it
that all the precision is in the original type.
I think this is right but I could be wrong.
Finally, when doing libcalls, set isZExt on
a parameter if it is "unsigned". Currently
isSExt is set when signed, and nothing is
set otherwise. This should be right for all
calls to standard library routines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47122 91177308-0d34-0410-b5e6-96231b3b80d8
Add an overload that supports the uint64_t interface for use by clients
that haven't been updated yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47039 91177308-0d34-0410-b5e6-96231b3b80d8
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46659 91177308-0d34-0410-b5e6-96231b3b80d8
Replace getLocation() with getFrameIndexOffset() which returns the delta from frame pointer to stack slot. Dwarf writer can then use the information for whatever it wants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46597 91177308-0d34-0410-b5e6-96231b3b80d8
arrays. Also, as a convenience, don't barf, just
return false, if someone calls isTruncStoreLegal
or isLoadXLegal with an extended type for the in
memory type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46352 91177308-0d34-0410-b5e6-96231b3b80d8
1. Legalize now always promotes truncstore of i1 to i8.
2. Remove patterns and gunk related to truncstore i1 from targets.
3. Rename the StoreXAction stuff to TruncStoreAction in TLI.
4. Make the TLI TruncStoreAction table a 2d table to handle from/to conversions.
5. Mark a wide variety of invalid truncstores as such in various targets, e.g.
X86 currently doesn't support truncstore of any of its integer types.
6. Add legalize support for truncstores with invalid value input types.
7. Add a dag combine transform to turn store(truncate) into truncstore when
safe.
The later allows us to compile CodeGen/X86/storetrunc-fp.ll to:
_foo:
fldt 20(%esp)
fldt 4(%esp)
faddp %st(1)
movl 36(%esp), %eax
fstps (%eax)
ret
instead of:
_foo:
subl $4, %esp
fldt 24(%esp)
fldt 8(%esp)
faddp %st(1)
fstps (%esp)
movl 40(%esp), %eax
movss (%esp), %xmm0
movss %xmm0, (%eax)
addl $4, %esp
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46140 91177308-0d34-0410-b5e6-96231b3b80d8
ShortenEHDataFor64Bits as a not-very-accurate
abstraction to cover all the changes in DwarfWriter.
Some cosmetic changes to Darwin assembly code for
gcc testsuite compatibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46029 91177308-0d34-0410-b5e6-96231b3b80d8
both work right according to the new flags.
This removes the TII::isReallySideEffectFree predicate, and adds
TII::isInvariantLoad.
It removes NeverHasSideEffects+MayHaveSideEffects and adds
UnmodeledSideEffects as machine instr flags. Now the clients
can decide everything they need.
I think isRematerializable can be implemented in terms of the
flags we have now, though I will let others tackle that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45843 91177308-0d34-0410-b5e6-96231b3b80d8
than hardware supported type will be scalarized, so we
can infer their alignment from that info.
We now codegen pr1845 into:
_boolVectorSelect:
lbz r2, 0(r3)
stb r2, -16(r1)
blr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45796 91177308-0d34-0410-b5e6-96231b3b80d8
all clients over to using predicates instead of these flags directly.
These are now private values which are only to be used to statically
initialize the tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45692 91177308-0d34-0410-b5e6-96231b3b80d8
flags that can be set. Add predicates for the ones lacking it, and switch
some clients over to using the predicates instead of Flags directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45690 91177308-0d34-0410-b5e6-96231b3b80d8
TargetInstrDescriptor class and shrink to 16-bits, saving a
word in TargetInstrDescriptor. Add some comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45686 91177308-0d34-0410-b5e6-96231b3b80d8
over to using them, instead of diddling Flags directly. Change the
various flags from const variables to enums.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45677 91177308-0d34-0410-b5e6-96231b3b80d8
that it is cheap and efficient to get.
Move a variety of predicates from TargetInstrInfo into
TargetInstrDescriptor, which makes it much easier to query a predicate
when you don't have TII around. Now you can use MI->getDesc()->isBranch()
instead of going through TII, and this is much more efficient anyway. Not
all of the predicates have been moved over yet.
Update old code that used MI->getInstrDescriptor()->Flags to use the
new predicates in many places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45674 91177308-0d34-0410-b5e6-96231b3b80d8
a header file from libcodegen. This violates a layering order: codegen
depends on target, not the other way around. The fix to this is to
split TII into two classes, TII and TargetInstrInfoImpl, which defines
stuff that depends on libcodegen. It is defined in libcodegen, where
the base is not.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45475 91177308-0d34-0410-b5e6-96231b3b80d8
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8
put it in a new header System/Host.h instead.
Instead of getting the endianness from configure,
calculate it directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44959 91177308-0d34-0410-b5e6-96231b3b80d8
don't have to #include config.h in it. #including config.h breaks
other projects that have their own autoconf stuff and try to #include
the llvm headers. One obscure example is llvm-gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44825 91177308-0d34-0410-b5e6-96231b3b80d8
using the minimum possible number of bytes. For little
endian targets run on little endian machines, apints are
stored in memory from LSB to MSB as before. For big endian
targets on big endian machines they are stored from MSB to
LSB which wasn't always the case before (if the target and
host endianness doesn't match values are stored according
to the host's endianness). Doing this requires knowing the
endianness of the host, which is determined when configuring -
thanks go to Anton for this. Only having access to little
endian machines I was unable to properly test the big endian
part, which is also the most complicated...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44796 91177308-0d34-0410-b5e6-96231b3b80d8
1) Change the interface to TargetLowering::ExpandOperationResult to
take and return entire NODES that need a result expanded, not just
the value. This allows us to handle things like READCYCLECOUNTER,
which returns two values.
2) Implement (extremely limited) support in LegalizeDAG::ExpandOp for MERGE_VALUES.
3) Reimplement custom lowering in LegalizeDAGTypes in terms of the new
ExpandOperationResult. This makes the result simpler and fully
general.
4) Implement (fully general) expand support for MERGE_VALUES in LegalizeDAGTypes.
5) Implement ExpandOperationResult support for ARM f64->i64 bitconvert and ARM
i64 shifts, allowing them to work with LegalizeDAGTypes.
6) Implement ExpandOperationResult support for X86 READCYCLECOUNTER and FP_TO_SINT,
allowing them to work with LegalizeDAGTypes.
LegalizeDAGTypes now passes several more X86 codegen tests when enabled and when
type legalization in LegalizeDAG is ifdef'd out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44300 91177308-0d34-0410-b5e6-96231b3b80d8