llvm-6502/lib/Target/Mips/MipsInstrInfo.td

1979 lines
78 KiB
TableGen
Raw Permalink Normal View History

//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<3, 4>,
SDTCisInt<4>]>;
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_MFLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>;
def SDT_MTLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
SDTCisInt<1>, SDTCisSameAs<1, 2>]>;
def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
[SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
SDTCisSameAs<0, 4>]>;
def SDTMipsLoadLR : SDTypeProfile<1, 2,
[SDTCisInt<0>, SDTCisPtrTy<1>,
SDTCisSameAs<0, 2>]>;
// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
// Tail call
def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
// TlsGd node is used to handle General Dynamic TLS
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
// TprelHi and TprelLo nodes are used to handle Local Exec TLS
def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
// Thread pointer
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
// Return
def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
// These are target-independent nodes, but have target-specific formats.
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPSideEffect,
SDNPOptInGlue, SDNPOutGlue]>;
// Nodes used to extract LO/HI registers.
def MipsMFHI : SDNode<"MipsISD::MFHI", SDT_MFLOHI>;
def MipsMFLO : SDNode<"MipsISD::MFLO", SDT_MFLOHI>;
// Node used to insert 32-bit integers to LOHI register pair.
def MipsMTLOHI : SDNode<"MipsISD::MTLOHI", SDT_MTLOHI>;
// Mult nodes.
def MipsMult : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
// MAdd*/MSub* nodes
def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
// DivRem(u) nodes
def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
def MipsDivRem16 : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
[SDNPOutGlue]>;
def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
[SDNPOutGlue]>;
// Target constant nodes that are not part of any isel patterns and remain
// unchanged can cause instructions with illegal operands to be emitted.
// Wrapper node patterns give the instruction selector a chance to replace
// target constant nodes that would otherwise remain unchanged with ADDiu
// nodes. Without these wrapper node patterns, the following conditional move
// instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
// compiled:
// movn %got(d)($gp), %got(c)($gp), $4
// This instruction is illegal since movn can take only register operands.
def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>;
def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>;
def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasMips2 : Predicate<"Subtarget->hasMips2()">,
AssemblerPredicate<"FeatureMips2">;
def HasMips3_32 : Predicate<"Subtarget->hasMips3_32()">,
AssemblerPredicate<"FeatureMips3_32">;
def HasMips3_32r2 : Predicate<"Subtarget->hasMips3_32r2()">,
AssemblerPredicate<"FeatureMips3_32r2">;
def HasMips3 : Predicate<"Subtarget->hasMips3()">,
AssemblerPredicate<"FeatureMips3">;
def HasMips4_32 : Predicate<"Subtarget->hasMips4_32()">,
AssemblerPredicate<"FeatureMips4_32">;
def NotMips4_32 : Predicate<"!Subtarget->hasMips4_32()">,
AssemblerPredicate<"FeatureMips4_32">;
def HasMips4_32r2 : Predicate<"Subtarget->hasMips4_32r2()">,
AssemblerPredicate<"FeatureMips4_32r2">;
def HasMips5_32r2 : Predicate<"Subtarget->hasMips5_32r2()">,
AssemblerPredicate<"FeatureMips5_32r2">;
def HasMips32 : Predicate<"Subtarget->hasMips32()">,
AssemblerPredicate<"FeatureMips32">;
def HasMips32r2 : Predicate<"Subtarget->hasMips32r2()">,
AssemblerPredicate<"FeatureMips32r2">;
def HasMips32r5 : Predicate<"Subtarget->hasMips32r5()">,
AssemblerPredicate<"FeatureMips32r5">;
def HasMips32r6 : Predicate<"Subtarget->hasMips32r6()">,
AssemblerPredicate<"FeatureMips32r6">;
def NotMips32r6 : Predicate<"!Subtarget->hasMips32r6()">,
AssemblerPredicate<"!FeatureMips32r6">;
def IsGP64bit : Predicate<"Subtarget->isGP64bit()">,
AssemblerPredicate<"FeatureGP64Bit">;
def IsGP32bit : Predicate<"!Subtarget->isGP64bit()">,
AssemblerPredicate<"!FeatureGP64Bit">;
def HasMips64 : Predicate<"Subtarget->hasMips64()">,
AssemblerPredicate<"FeatureMips64">;
def HasMips64r2 : Predicate<"Subtarget->hasMips64r2()">,
AssemblerPredicate<"FeatureMips64r2">;
def HasMips64r6 : Predicate<"Subtarget->hasMips64r6()">,
AssemblerPredicate<"FeatureMips64r6">;
def NotMips64r6 : Predicate<"!Subtarget->hasMips64r6()">,
AssemblerPredicate<"!FeatureMips64r6">;
def HasMicroMips32r6 : Predicate<"Subtarget->inMicroMips32r6Mode()">,
AssemblerPredicate<"FeatureMicroMips,FeatureMips32r6">;
def InMips16Mode : Predicate<"Subtarget->inMips16Mode()">,
AssemblerPredicate<"FeatureMips16">;
def HasCnMips : Predicate<"Subtarget->hasCnMips()">,
AssemblerPredicate<"FeatureCnMips">;
def RelocStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;
def RelocPIC : Predicate<"TM.getRelocationModel() == Reloc::PIC_">;
def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">;
def HasStdEnc : Predicate<"Subtarget->hasStandardEncoding()">,
AssemblerPredicate<"!FeatureMips16">;
def NotDSP : Predicate<"!Subtarget->hasDSP()">;
def InMicroMips : Predicate<"Subtarget->inMicroMipsMode()">,
AssemblerPredicate<"FeatureMicroMips">;
def NotInMicroMips : Predicate<"!Subtarget->inMicroMipsMode()">,
AssemblerPredicate<"!FeatureMicroMips">;
def IsLE : Predicate<"Subtarget->isLittle()">;
def IsBE : Predicate<"!Subtarget->isLittle()">;
def IsNotNaCl : Predicate<"!Subtarget->isTargetNaCl()">;
//===----------------------------------------------------------------------===//
// Mips GPR size adjectives.
// They are mutually exclusive.
//===----------------------------------------------------------------------===//
class GPR_32 { list<Predicate> GPRPredicates = [IsGP32bit]; }
class GPR_64 { list<Predicate> GPRPredicates = [IsGP64bit]; }
//===----------------------------------------------------------------------===//
// Mips ISA/ASE membership and instruction group membership adjectives.
// They are mutually exclusive.
//===----------------------------------------------------------------------===//
// FIXME: I'd prefer to use additive predicates to build the instruction sets
// but we are short on assembler feature bits at the moment. Using a
// subtractive predicate will hopefully keep us under the 32 predicate
// limit long enough to develop an alternative way to handle P1||P2
// predicates.
class ISA_MIPS1_NOT_4_32 {
list<Predicate> InsnPredicates = [NotMips4_32];
}
class ISA_MIPS1_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [NotMips32r6, NotMips64r6];
}
class ISA_MIPS2 { list<Predicate> InsnPredicates = [HasMips2]; }
class ISA_MIPS2_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips2, NotMips32r6, NotMips64r6];
}
class ISA_MIPS3 { list<Predicate> InsnPredicates = [HasMips3]; }
class ISA_MIPS3_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips3, NotMips32r6, NotMips64r6];
}
class ISA_MIPS32 { list<Predicate> InsnPredicates = [HasMips32]; }
class ISA_MIPS32_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips32, NotMips32r6, NotMips64r6];
}
class ISA_MIPS32R2 { list<Predicate> InsnPredicates = [HasMips32r2]; }
class ISA_MIPS32R2_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips32r2, NotMips32r6, NotMips64r6];
}
class ISA_MIPS32R5 { list<Predicate> InsnPredicates = [HasMips32r5]; }
class ISA_MIPS64 { list<Predicate> InsnPredicates = [HasMips64]; }
class ISA_MIPS64_NOT_64R6 {
list<Predicate> InsnPredicates = [HasMips64, NotMips64r6];
}
class ISA_MIPS64R2 { list<Predicate> InsnPredicates = [HasMips64r2]; }
class ISA_MIPS32R6 { list<Predicate> InsnPredicates = [HasMips32r6]; }
class ISA_MIPS64R6 { list<Predicate> InsnPredicates = [HasMips64r6]; }
class ISA_MICROMIPS32R6 {
list<Predicate> InsnPredicates = [HasMicroMips32r6];
}
// The portions of MIPS-III that were also added to MIPS32
class INSN_MIPS3_32 { list<Predicate> InsnPredicates = [HasMips3_32]; }
// The portions of MIPS-III that were also added to MIPS32 but were removed in
// MIPS32r6 and MIPS64r6.
class INSN_MIPS3_32_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips3_32, NotMips32r6, NotMips64r6];
}
// The portions of MIPS-III that were also added to MIPS32
class INSN_MIPS3_32R2 { list<Predicate> InsnPredicates = [HasMips3_32r2]; }
// The portions of MIPS-IV that were also added to MIPS32 but were removed in
// MIPS32r6 and MIPS64r6.
class INSN_MIPS4_32_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips4_32, NotMips32r6, NotMips64r6];
}
// The portions of MIPS-IV that were also added to MIPS32r2 but were removed in
// MIPS32r6 and MIPS64r6.
class INSN_MIPS4_32R2_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips4_32r2, NotMips32r6, NotMips64r6];
}
// The portions of MIPS-V that were also added to MIPS32r2 but were removed in
// MIPS32r6 and MIPS64r6.
class INSN_MIPS5_32R2_NOT_32R6_64R6 {
list<Predicate> InsnPredicates = [HasMips5_32r2, NotMips32r6, NotMips64r6];
}
//===----------------------------------------------------------------------===//
class MipsPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl {
let EncodingPredicates = [HasStdEnc];
}
class MipsInstAlias<string Asm, dag Result, bit Emit = 0b1> :
InstAlias<Asm, Result, Emit>, PredicateControl;
class IsCommutable {
bit isCommutable = 1;
}
class IsBranch {
bit isBranch = 1;
}
class IsReturn {
bit isReturn = 1;
}
class IsCall {
bit isCall = 1;
}
class IsTailCall {
bit isCall = 1;
bit isTerminator = 1;
bit isReturn = 1;
bit isBarrier = 1;
bit hasExtraSrcRegAllocReq = 1;
bit isCodeGenOnly = 1;
}
class IsAsCheapAsAMove {
bit isAsCheapAsAMove = 1;
}
class NeverHasSideEffects {
bit hasSideEffects = 0;
}
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
def MipsJumpTargetAsmOperand : AsmOperandClass {
let Name = "JumpTarget";
let ParserMethod = "parseJumpTarget";
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
let PredicateMethod = "isImm";
let RenderMethod = "addImmOperands";
}
// Instruction operand types
def jmptarget : Operand<OtherVT> {
let EncoderMethod = "getJumpTargetOpValue";
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
let ParserMatchClass = MipsJumpTargetAsmOperand;
}
def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
let DecoderMethod = "DecodeBranchTarget";
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
let ParserMatchClass = MipsJumpTargetAsmOperand;
}
def calltarget : Operand<iPTR> {
let EncoderMethod = "getJumpTargetOpValue";
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
let ParserMatchClass = MipsJumpTargetAsmOperand;
}
def imm64: Operand<i64>;
def simm9 : Operand<i32>;
def simm10 : Operand<i32>;
def simm11 : Operand<i32>;
def simm16 : Operand<i32> {
let DecoderMethod= "DecodeSimm16";
}
def simm19_lsl2 : Operand<i32> {
let EncoderMethod = "getSimm19Lsl2Encoding";
let DecoderMethod = "DecodeSimm19Lsl2";
let ParserMatchClass = MipsJumpTargetAsmOperand;
}
def simm18_lsl3 : Operand<i32> {
let EncoderMethod = "getSimm18Lsl3Encoding";
let DecoderMethod = "DecodeSimm18Lsl3";
let ParserMatchClass = MipsJumpTargetAsmOperand;
}
def simm20 : Operand<i32> {
}
def uimm20 : Operand<i32> {
}
def MipsUImm10AsmOperand : AsmOperandClass {
let Name = "UImm10";
let RenderMethod = "addImmOperands";
let ParserMethod = "parseImm";
let PredicateMethod = "isUImm<10>";
}
def uimm10 : Operand<i32> {
let ParserMatchClass = MipsUImm10AsmOperand;
}
def simm16_64 : Operand<i64> {
let DecoderMethod = "DecodeSimm16";
}
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
// Zero
def uimmz : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
// Unsigned Operand
def uimm2 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def uimm3 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def uimm5 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def uimm6 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def pcrel16 : Operand<i32> {
}
def MipsMemAsmOperand : AsmOperandClass {
let Name = "Mem";
let ParserMethod = "parseMemOperand";
}
def MipsMemSimm11AsmOperand : AsmOperandClass {
let Name = "MemOffsetSimm11";
let SuperClasses = [MipsMemAsmOperand];
let RenderMethod = "addMemOperands";
let ParserMethod = "parseMemOperand";
let PredicateMethod = "isMemWithSimmOffset<11>";
}
def MipsMemSimm16AsmOperand : AsmOperandClass {
let Name = "MemOffsetSimm16";
let SuperClasses = [MipsMemAsmOperand];
let RenderMethod = "addMemOperands";
let ParserMethod = "parseMemOperand";
let PredicateMethod = "isMemWithSimmOffset<16>";
}
def MipsInvertedImmoperand : AsmOperandClass {
let Name = "InvNum";
let RenderMethod = "addImmOperands";
let ParserMethod = "parseInvNum";
}
def InvertedImOperand : Operand<i32> {
let ParserMatchClass = MipsInvertedImmoperand;
}
def InvertedImOperand64 : Operand<i64> {
let ParserMatchClass = MipsInvertedImmoperand;
}
class mem_generic : Operand<iPTR> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops ptr_rc, simm16);
let EncoderMethod = "getMemEncoding";
let ParserMatchClass = MipsMemAsmOperand;
let OperandType = "OPERAND_MEMORY";
}
// Address operand
def mem : mem_generic;
// MSA specific address operand
def mem_msa : mem_generic {
let MIOperandInfo = (ops ptr_rc, simm10);
let EncoderMethod = "getMSAMemEncoding";
}
def mem_simm9 : mem_generic {
let MIOperandInfo = (ops ptr_rc, simm9);
let EncoderMethod = "getMemEncoding";
}
def mem_simm11 : mem_generic {
let MIOperandInfo = (ops ptr_rc, simm11);
let EncoderMethod = "getMemEncoding";
let ParserMatchClass = MipsMemSimm11AsmOperand;
}
def mem_simm16 : mem_generic {
let MIOperandInfo = (ops ptr_rc, simm16);
let EncoderMethod = "getMemEncoding";
let ParserMatchClass = MipsMemSimm16AsmOperand;
}
def mem_ea : Operand<iPTR> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops ptr_rc, simm16);
let EncoderMethod = "getMemEncoding";
let OperandType = "OPERAND_MEMORY";
}
def PtrRC : Operand<iPTR> {
let MIOperandInfo = (ops ptr_rc);
let DecoderMethod = "DecodePtrRegisterClass";
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
let ParserMatchClass = GPR32AsmOperand;
}
// size operand of ext instruction
def size_ext : Operand<i32> {
let EncoderMethod = "getSizeExtEncoding";
let DecoderMethod = "DecodeExtSize";
}
// size operand of ins instruction
def size_ins : Operand<i32> {
let EncoderMethod = "getSizeInsEncoding";
let DecoderMethod = "DecodeInsSize";
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getImm(N, N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
}]>;
// Plus 1.
def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
[mips] Rewrite MipsAsmParser and MipsOperand. Summary: Highlights: - Registers are resolved much later (by the render method). Prior to that point, GPR32's/GPR64's are GPR's regardless of register size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register size or FR mode. Numeric registers can be anything. - All registers are parsed the same way everywhere (even when handling symbol aliasing) - One consequence is that all registers can be specified numerically almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing but that can be easily resolved. - Removes the need for the hasConsumedDollar hack - Parenthesis and Bracket suffixes are handled generically - Micromips instructions are parsed directly instead of going through the standard encodings first. - rdhwr accepts all 32 registers, and the following instructions that previously xfailed now work: ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d, c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1 - Diagnostics involving registers point at the correct character (the $) - There's only one kind of immediate in MipsOperand. LSA immediates are handled by the predicate and renderer. Lowlights: - Hardcoded '$zero' in the div patterns is handled with a hack. MipsOperand::isReg() will return true for a k_RegisterIndex token with Index == 0 and getReg() will return ZERO for this case. Note that it doesn't return ZERO_64 on isGP64() targets. - I haven't cleaned up all of the now-unused functions. Some more of the generic parser could be removed too (integers and relocs for example). - insve.df needed a custom decoder to handle the implicit fourth operand that was needed to make it parse correctly. The difficulty was that the matcher expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this. Reviewers: matheusalmeida, vmedic Reviewed By: matheusalmeida Differential Revision: http://llvm-reviews.chandlerc.com/D3222 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-01 10:35:28 +00:00
// Node immediate is zero (e.g. insve.d)
def immz : PatLeaf<(imm), [{ return N->getSExtValue() == 0; }]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
// Node immediate fits as 15-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt15 : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
else
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
def immLow16Zero : PatLeaf<(imm), [{
int64_t Val = N->getSExtValue();
return isInt<32>(Val) && !(Val & 0xffff);
}]>;
// shamt field must fit in 5 bits.
def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
// True if (N + 1) fits in 16-bit field.
def immSExt16Plus1 : PatLeaf<(imm), [{
return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr :
ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
def addrRegImm :
ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
def addrRegReg :
ComplexPattern<iPTR, 2, "selectAddrRegReg", [frameindex]>;
def addrDefault :
ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
def addrimm10 : ComplexPattern<iPTR, 2, "selectIntAddrMSA", [frameindex]>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic and logical instructions with 3 register operands.
class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
InstrItinClass Itin = NoItinerary,
SDPatternOperator OpNode = null_frag>:
InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
let isCommutable = isComm;
let isReMaterializable = 1;
let TwoOperandAliasConstraint = "$rd = $rs";
}
// Arithmetic and logical instructions with 2 register operands.
class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
InstrItinClass Itin = NoItinerary,
SDPatternOperator imm_type = null_frag,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
!strconcat(opstr, "\t$rt, $rs, $imm16"),
[(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
Itin, FrmI, opstr> {
let isReMaterializable = 1;
let TwoOperandAliasConstraint = "$rs = $rt";
}
// Arithmetic Multiply ADD/SUB
class MArithR<string opstr, InstrItinClass itin, bit isComm = 0> :
InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt),
!strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR, opstr> {
let Defs = [HI0, LO0];
let Uses = [HI0, LO0];
let isCommutable = isComm;
}
// Logical
class LogicNOR<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set RO:$rd, (not (or RO:$rs, RO:$rt)))], II_NOR, FrmR, opstr> {
let isCommutable = 1;
}
// Shifts
class shift_rotate_imm<string opstr, Operand ImmOpnd,
RegisterOperand RO, InstrItinClass itin,
SDPatternOperator OpNode = null_frag,
SDPatternOperator PF = null_frag> :
InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt),
!strconcat(opstr, "\t$rd, $rt, $shamt"),
[(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], itin, FrmR, opstr> {
let TwoOperandAliasConstraint = "$rt = $rd";
}
class shift_rotate_reg<string opstr, RegisterOperand RO, InstrItinClass itin,
SDPatternOperator OpNode = null_frag>:
InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs),
!strconcat(opstr, "\t$rd, $rt, $rs"),
[(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], itin, FrmR,
opstr>;
// Load Upper Imediate
class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>:
InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
[], II_LUI, FrmI, opstr>, IsAsCheapAsAMove {
let hasSideEffects = 0;
let isReMaterializable = 1;
}
// Memory Load/Store
class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> {
let DecoderMethod = "DecodeMem";
let canFoldAsLoad = 1;
let mayLoad = 1;
}
class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> {
let DecoderMethod = "DecodeMem";
let mayStore = 1;
}
// Load/Store Left/Right
let canFoldAsLoad = 1 in
class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
InstrItinClass Itin> :
InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src),
!strconcat(opstr, "\t$rt, $addr"),
[(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> {
let DecoderMethod = "DecodeMem";
string Constraints = "$src = $rt";
}
class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
InstrItinClass Itin> :
InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RO:$rt, addr:$addr)], Itin, FrmI> {
let DecoderMethod = "DecodeMem";
}
// COP2 Load/Store
class LW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
let DecoderMethod = "DecodeFMem2";
let mayLoad = 1;
}
class SW_FT2<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
let DecoderMethod = "DecodeFMem2";
let mayStore = 1;
}
// COP3 Load/Store
class LW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
let DecoderMethod = "DecodeFMem3";
let mayLoad = 1;
}
class SW_FT3<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
let DecoderMethod = "DecodeFMem3";
let mayStore = 1;
}
// Conditional Branch
class CBranch<string opstr, DAGOperand opnd, PatFrag cond_op,
RegisterOperand RO, bit DelaySlot = 1> :
InstSE<(outs), (ins RO:$rs, RO:$rt, opnd:$offset),
!strconcat(opstr, "\t$rs, $rt, $offset"),
[(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], IIBranch,
FrmI, opstr> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = DelaySlot;
let Defs = [AT];
}
class CBranchZero<string opstr, DAGOperand opnd, PatFrag cond_op,
RegisterOperand RO, bit DelaySlot = 1> :
InstSE<(outs), (ins RO:$rs, opnd:$offset),
!strconcat(opstr, "\t$rs, $offset"),
[(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], IIBranch,
FrmI, opstr> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = DelaySlot;
let Defs = [AT];
}
// SetCC
class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> :
InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))],
II_SLT_SLTU, FrmR, opstr>;
class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
RegisterOperand RO>:
InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16),
!strconcat(opstr, "\t$rt, $rs, $imm16"),
[(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))],
II_SLTI_SLTIU, FrmI, opstr>;
// Jump
class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
SDPatternOperator targetoperator, string bopstr> :
InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
[(operator targetoperator:$target)], IIBranch, FrmJ, bopstr> {
let isTerminator=1;
let isBarrier=1;
let hasDelaySlot = 1;
let DecoderMethod = "DecodeJumpTarget";
let Defs = [AT];
}
// Unconditional branch
class UncondBranch<Instruction BEQInst> :
PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], IIBranch>,
PseudoInstExpansion<(BEQInst ZERO, ZERO, brtarget:$offset)> {
let isBranch = 1;
let isTerminator = 1;
let isBarrier = 1;
let hasDelaySlot = 1;
let AdditionalPredicates = [RelocPIC];
let Defs = [AT];
}
// Base class for indirect branch and return instruction classes.
let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFR<string opstr, RegisterOperand RO,
SDPatternOperator operator = null_frag>:
InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], IIBranch,
FrmR, opstr>;
// Indirect branch
class IndirectBranch<string opstr, RegisterOperand RO> : JumpFR<opstr, RO> {
let isBranch = 1;
let isIndirectBranch = 1;
}
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1, Defs = [RA] in {
class JumpLink<string opstr, DAGOperand opnd> :
InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
[(MipsJmpLink imm:$target)], IIBranch, FrmJ, opstr> {
let DecoderMethod = "DecodeJumpTarget";
}
class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst,
Register RetReg, RegisterOperand ResRO = RO>:
PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], IIBranch>,
PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>;
class JumpLinkReg<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[], IIBranch, FrmR>;
class BGEZAL_FT<string opstr, DAGOperand opnd,
RegisterOperand RO, bit DelaySlot = 1> :
InstSE<(outs), (ins RO:$rs, opnd:$offset),
!strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI, opstr> {
let hasDelaySlot = DelaySlot;
}
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, hasDelaySlot = 1,
hasExtraSrcRegAllocReq = 1, Defs = [AT] in {
class TailCall<Instruction JumpInst> :
PseudoSE<(outs), (ins calltarget:$target), [], IIBranch>,
PseudoInstExpansion<(JumpInst jmptarget:$target)>;
class TailCallReg<RegisterOperand RO, Instruction JRInst,
RegisterOperand ResRO = RO> :
PseudoSE<(outs), (ins RO:$rs), [(MipsTailCall RO:$rs)], IIBranch>,
PseudoInstExpansion<(JRInst ResRO:$rs)>;
}
class BAL_BR_Pseudo<Instruction RealInst> :
PseudoSE<(outs), (ins brtarget:$offset), [], IIBranch>,
PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> {
let isBranch = 1;
let isTerminator = 1;
let isBarrier = 1;
let hasDelaySlot = 1;
let Defs = [RA];
}
// Syscall
class SYS_FT<string opstr> :
InstSE<(outs), (ins uimm20:$code_),
!strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI, opstr>;
// Break
class BRK_FT<string opstr> :
InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
!strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary,
FrmOther, opstr>;
// (D)Eret
class ER_FT<string opstr> :
InstSE<(outs), (ins),
opstr, [], NoItinerary, FrmOther, opstr>;
// Interrupts
class DEI_FT<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$rt), (ins),
!strconcat(opstr, "\t$rt"), [], NoItinerary, FrmOther, opstr>;
// Wait
class WAIT_FT<string opstr> :
InstSE<(outs), (ins), opstr, [], NoItinerary, FrmOther, opstr>;
// Sync
let hasSideEffects = 1 in
class SYNC_FT<string opstr> :
InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
NoItinerary, FrmOther, opstr>;
class SYNCI_FT<string opstr> :
InstSE<(outs), (ins mem_simm16:$addr), !strconcat(opstr, "\t$addr"), [],
NoItinerary, FrmOther, opstr> {
let hasSideEffects = 1;
let DecoderMethod = "DecodeSyncI";
}
let hasSideEffects = 1 in
class TEQ_FT<string opstr, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
!strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary,
FrmI, opstr>;
class TEQI_FT<string opstr, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, uimm16:$imm16),
!strconcat(opstr, "\t$rs, $imm16"), [], NoItinerary, FrmOther, opstr>;
// Mul, Div
class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
list<Register> DefRegs> :
InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
itin, FrmR, opstr> {
let isCommutable = 1;
let Defs = DefRegs;
let hasSideEffects = 0;
}
// Pseudo multiply/divide instruction with explicit accumulator register
// operands.
class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
SDPatternOperator OpNode, InstrItinClass Itin,
bit IsComm = 1, bit HasSideEffects = 0,
bit UsesCustomInserter = 0> :
PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
[(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
let isCommutable = IsComm;
let hasSideEffects = HasSideEffects;
let usesCustomInserter = UsesCustomInserter;
}
// Pseudo multiply add/sub instruction with explicit accumulator register
// operands.
class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode,
InstrItinClass itin>
: PseudoSE<(outs ACC64:$ac),
(ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin),
[(set ACC64:$ac,
(OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))],
itin>,
PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> {
string Constraints = "$acin = $ac";
}
class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
list<Register> DefRegs> :
InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
[], itin, FrmR, opstr> {
let Defs = DefRegs;
}
// Move from Hi/Lo
class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode>
: PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo),
[(set DstRC:$rd, (OpNode SrcRC:$hilo))], II_MFHI_MFLO>;
class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>:
InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], II_MFHI_MFLO,
FrmR, opstr> {
let Uses = [UseReg];
let hasSideEffects = 0;
}
class PseudoMTLOHI<RegisterClass DstRC, RegisterClass SrcRC>
: PseudoSE<(outs DstRC:$lohi), (ins SrcRC:$lo, SrcRC:$hi),
[(set DstRC:$lohi, (MipsMTLOHI SrcRC:$lo, SrcRC:$hi))],
II_MTHI_MTLO>;
class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>:
InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], II_MTHI_MTLO,
FrmR, opstr> {
let Defs = DefRegs;
let hasSideEffects = 0;
}
class EffectiveAddress<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RO:$rt, addr:$addr)], NoItinerary, FrmI,
!strconcat(opstr, "_lea")> {
let isCodeGenOnly = 1;
let DecoderMethod = "DecodeMem";
}
// Count Leading Ones/Zeros in Word
class CountLeading0<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[(set RO:$rd, (ctlz RO:$rs))], II_CLZ, FrmR, opstr>;
class CountLeading1<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[(set RO:$rd, (ctlz (not RO:$rs)))], II_CLO, FrmR, opstr>;
// Sign Extend in Register.
class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO,
InstrItinClass itin> :
InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"),
[(set RO:$rd, (sext_inreg RO:$rt, vt))], itin, FrmR, opstr>;
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
// Subword Swap
class SubwordSwap<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
NoItinerary, FrmR, opstr> {
let hasSideEffects = 0;
}
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
// Read Hardware
class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> :
InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
II_RDHWR, FrmR, "rdhwr">;
// Ext and Ins
class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd,
SDPatternOperator Op = null_frag>:
InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ext:$size),
!strconcat(opstr, " $rt, $rs, $pos, $size"),
[(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size))], II_EXT,
FrmR, opstr>, ISA_MIPS32R2;
class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd,
SDPatternOperator Op = null_frag>:
InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ins:$size, RO:$src),
!strconcat(opstr, " $rt, $rs, $pos, $size"),
[(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size, RO:$src))],
II_INS, FrmR, opstr>, ISA_MIPS32R2 {
let Constraints = "$src = $rt";
}
// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
class Atomic2Ops<PatFrag Op, RegisterClass DRC> :
PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr),
[(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>;
// Atomic Compare & Swap.
class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> :
PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap),
[(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>;
class LLBase<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[], NoItinerary, FrmI> {
let DecoderMethod = "DecodeMem";
let mayLoad = 1;
}
class SCBase<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr),
!strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
let DecoderMethod = "DecodeMem";
let mayStore = 1;
let Constraints = "$rt = $dst";
}
class MFC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD> :
InstSE<(outs RO:$rt), (ins RD:$rd, uimm16:$sel),
!strconcat(asmstr, "\t$rt, $rd, $sel"), [], NoItinerary, FrmFR>;
class MTC3OP<string asmstr, RegisterOperand RO, RegisterOperand RD> :
InstSE<(outs RO:$rd), (ins RD:$rt, uimm16:$sel),
!strconcat(asmstr, "\t$rt, $rd, $sel"), [], NoItinerary, FrmFR>;
class TrapBase<Instruction RealInst>
: PseudoSE<(outs), (ins), [(trap)], NoItinerary>,
PseudoInstExpansion<(RealInst 0, 0)> {
let isBarrier = 1;
let isTerminator = 1;
let isCodeGenOnly = 1;
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// Return RA.
let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let usesCustomInserter = 1 in {
def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, GPR32>;
def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, GPR32>;
def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, GPR32>;
def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, GPR32>;
def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, GPR32>;
def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, GPR32>;
def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, GPR32>;
def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, GPR32>;
def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, GPR32>;
def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, GPR32>;
def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, GPR32>;
def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, GPR32>;
def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, GPR32>;
def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, GPR32>;
def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, GPR32>;
def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, GPR32>;
def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>;
def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>;
def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, GPR32>;
def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, GPR32>;
def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, GPR32>;
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>;
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>;
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>;
}
/// Pseudo instructions for loading and storing accumulator registers.
let isPseudo = 1, isCodeGenOnly = 1 in {
def LOAD_ACC64 : Load<"", ACC64>;
def STORE_ACC64 : Store<"", ACC64>;
}
// We need these two pseudo instructions to avoid offset calculation for long
// branches. See the comment in file MipsLongBranch.cpp for detailed
// explanation.
// Expands to: lui $dst, %hi($tgt - $baltgt)
def LONG_BRANCH_LUi : PseudoSE<(outs GPR32Opnd:$dst),
(ins brtarget:$tgt, brtarget:$baltgt), []>;
// Expands to: addiu $dst, $src, %lo($tgt - $baltgt)
def LONG_BRANCH_ADDiu : PseudoSE<(outs GPR32Opnd:$dst),
(ins GPR32Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>;
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
let AdditionalPredicates = [NotInMicroMips] in {
def ADDiu : MMRel, StdMMR6Rel, ArithLogicI<"addiu", simm16, GPR32Opnd,
II_ADDIU, immSExt16, add>,
ADDI_FM<0x9>, IsAsCheapAsAMove;
}
def ADDi : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>, ADDI_FM<0x8>,
ISA_MIPS1_NOT_32R6_64R6;
def SLTi : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
SLTI_FM<0xa>;
def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
SLTI_FM<0xb>;
let AdditionalPredicates = [NotInMicroMips] in {
def ANDi : MMRel, StdMMR6Rel,
ArithLogicI<"andi", uimm16, GPR32Opnd, II_ANDI, immZExt16, and>,
ADDI_FM<0xc>;
}
def ORi : MMRel, StdMMR6Rel,
ArithLogicI<"ori", uimm16, GPR32Opnd, II_ORI, immZExt16, or>,
ADDI_FM<0xd>;
def XORi : MMRel, StdMMR6Rel,
ArithLogicI<"xori", uimm16, GPR32Opnd, II_XORI, immZExt16, xor>,
ADDI_FM<0xe>;
def LUi : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16>, LUI_FM;
let AdditionalPredicates = [NotInMicroMips] in {
/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu : MMRel, StdMMR6Rel, ArithLogicR<"addu", GPR32Opnd, 1, II_ADDU, add>,
ADD_FM<0, 0x21>;
def SUBu : MMRel, ArithLogicR<"subu", GPR32Opnd, 0, II_SUBU, sub>,
ADD_FM<0, 0x23>;
}
let Defs = [HI0, LO0] in
def MUL : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, II_MUL, mul>,
ADD_FM<0x1c, 2>, ISA_MIPS32_NOT_32R6_64R6;
def ADD : MMRel, StdMMR6Rel, ArithLogicR<"add", GPR32Opnd>, ADD_FM<0, 0x20>;
def SUB : MMRel, ArithLogicR<"sub", GPR32Opnd>, ADD_FM<0, 0x22>;
def SLT : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>;
def SLTu : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>;
let AdditionalPredicates = [NotInMicroMips] in {
def AND : MMRel, StdMMR6Rel, ArithLogicR<"and", GPR32Opnd, 1, II_AND, and>,
ADD_FM<0, 0x24>;
def OR : MMRel, StdMMR6Rel, ArithLogicR<"or", GPR32Opnd, 1, II_OR, or>,
ADD_FM<0, 0x25>;
def XOR : MMRel, StdMMR6Rel, ArithLogicR<"xor", GPR32Opnd, 1, II_XOR, xor>,
ADD_FM<0, 0x26>;
}
def NOR : MMRel, StdMMR6Rel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>;
/// Shift Instructions
let AdditionalPredicates = [NotInMicroMips] in {
def SLL : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, II_SLL, shl,
immZExt5>, SRA_FM<0, 0>;
def SRL : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, II_SRL, srl,
immZExt5>, SRA_FM<2, 0>;
}
def SRA : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, II_SRA, sra,
immZExt5>, SRA_FM<3, 0>;
def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, II_SLLV, shl>,
SRLV_FM<4, 0>;
def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, II_SRLV, srl>,
SRLV_FM<6, 0>;
def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, II_SRAV, sra>,
SRLV_FM<7, 0>;
// Rotate Instructions
def ROTR : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, II_ROTR, rotr,
immZExt5>,
SRA_FM<2, 1>, ISA_MIPS32R2;
def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, II_ROTRV, rotr>,
SRLV_FM<6, 1>, ISA_MIPS32R2;
/// Load and Store Instructions
/// aligned
def LB : Load<"lb", GPR32Opnd, sextloadi8, II_LB>, MMRel, LW_FM<0x20>;
def LBu : Load<"lbu", GPR32Opnd, zextloadi8, II_LBU, addrDefault>, MMRel,
LW_FM<0x24>;
def LH : Load<"lh", GPR32Opnd, sextloadi16, II_LH, addrDefault>, MMRel,
LW_FM<0x21>;
def LHu : Load<"lhu", GPR32Opnd, zextloadi16, II_LHU>, MMRel, LW_FM<0x25>;
let AdditionalPredicates = [NotInMicroMips] in {
def LW : Load<"lw", GPR32Opnd, load, II_LW, addrDefault>, MMRel,
LW_FM<0x23>;
}
def SB : Store<"sb", GPR32Opnd, truncstorei8, II_SB>, MMRel, LW_FM<0x28>;
def SH : Store<"sh", GPR32Opnd, truncstorei16, II_SH>, MMRel, LW_FM<0x29>;
let AdditionalPredicates = [NotInMicroMips] in {
def SW : Store<"sw", GPR32Opnd, store, II_SW>, MMRel, LW_FM<0x2b>;
}
/// load/store left/right
let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug
AdditionalPredicates = [NotInMicroMips] in {
def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, II_LWL>, LW_FM<0x22>,
ISA_MIPS1_NOT_32R6_64R6;
def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, II_LWR>, LW_FM<0x26>,
ISA_MIPS1_NOT_32R6_64R6;
def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd, II_SWL>, LW_FM<0x2a>,
ISA_MIPS1_NOT_32R6_64R6;
def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, II_SWR>, LW_FM<0x2e>,
ISA_MIPS1_NOT_32R6_64R6;
}
let AdditionalPredicates = [NotInMicroMips] in {
// COP2 Memory Instructions
def LWC2 : LW_FT2<"lwc2", COP2Opnd, NoItinerary, load>, LW_FM<0x32>,
ISA_MIPS1_NOT_32R6_64R6;
def SWC2 : SW_FT2<"swc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3a>,
ISA_MIPS1_NOT_32R6_64R6;
def LDC2 : LW_FT2<"ldc2", COP2Opnd, NoItinerary, load>, LW_FM<0x36>,
ISA_MIPS2_NOT_32R6_64R6;
def SDC2 : SW_FT2<"sdc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3e>,
ISA_MIPS2_NOT_32R6_64R6;
// COP3 Memory Instructions
let DecoderNamespace = "COP3_" in {
def LWC3 : LW_FT3<"lwc3", COP3Opnd, NoItinerary, load>, LW_FM<0x33>;
def SWC3 : SW_FT3<"swc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3b>;
def LDC3 : LW_FT3<"ldc3", COP3Opnd, NoItinerary, load>, LW_FM<0x37>,
ISA_MIPS2;
def SDC3 : SW_FT3<"sdc3", COP3Opnd, NoItinerary, store>, LW_FM<0x3f>,
ISA_MIPS2;
}
}
def SYNC : MMRel, SYNC_FT<"sync">, SYNC_FM, ISA_MIPS32;
def SYNCI : MMRel, SYNCI_FT<"synci">, SYNCI_FM, ISA_MIPS32R2;
def TEQ : MMRel, TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>, ISA_MIPS2;
def TGE : MMRel, TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>, ISA_MIPS2;
def TGEU : MMRel, TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>, ISA_MIPS2;
def TLT : MMRel, TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>, ISA_MIPS2;
def TLTU : MMRel, TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>, ISA_MIPS2;
def TNE : MMRel, TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>, ISA_MIPS2;
def TEQI : MMRel, TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM<0xc>,
ISA_MIPS2_NOT_32R6_64R6;
def TGEI : MMRel, TEQI_FT<"tgei", GPR32Opnd>, TEQI_FM<0x8>,
ISA_MIPS2_NOT_32R6_64R6;
def TGEIU : MMRel, TEQI_FT<"tgeiu", GPR32Opnd>, TEQI_FM<0x9>,
ISA_MIPS2_NOT_32R6_64R6;
def TLTI : MMRel, TEQI_FT<"tlti", GPR32Opnd>, TEQI_FM<0xa>,
ISA_MIPS2_NOT_32R6_64R6;
def TTLTIU : MMRel, TEQI_FT<"tltiu", GPR32Opnd>, TEQI_FM<0xb>,
ISA_MIPS2_NOT_32R6_64R6;
def TNEI : MMRel, TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM<0xe>,
ISA_MIPS2_NOT_32R6_64R6;
let AdditionalPredicates = [NotInMicroMips] in {
def BREAK : MMRel, StdMMR6Rel, BRK_FT<"break">, BRK_FM<0xd>;
}
def SYSCALL : MMRel, SYS_FT<"syscall">, SYS_FM<0xc>;
def TRAP : TrapBase<BREAK>;
def SDBBP : MMRel, SYS_FT<"sdbbp">, SDBBP_FM, ISA_MIPS32_NOT_32R6_64R6;
let AdditionalPredicates = [NotInMicroMips] in {
def ERET : MMRel, ER_FT<"eret">, ER_FM<0x18, 0x0>, INSN_MIPS3_32;
def ERETNC : MMRel, ER_FT<"eretnc">, ER_FM<0x18, 0x1>, ISA_MIPS32R5;
}
def DERET : MMRel, ER_FT<"deret">, ER_FM<0x1f, 0x0>, ISA_MIPS32;
let AdditionalPredicates = [NotInMicroMips] in {
def EI : MMRel, StdMMR6Rel, DEI_FT<"ei", GPR32Opnd>, EI_FM<1>, ISA_MIPS32R2;
}
def DI : MMRel, DEI_FT<"di", GPR32Opnd>, EI_FM<0>, ISA_MIPS32R2;
let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug
AdditionalPredicates = [NotInMicroMips] in {
def WAIT : WAIT_FT<"wait">, WAIT_FM;
/// Load-linked, Store-conditional
def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>, ISA_MIPS2_NOT_32R6_64R6;
def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>, ISA_MIPS2_NOT_32R6_64R6;
}
/// Jump and Branch Instructions
def J : MMRel, JumpFJ<jmptarget, "j", br, bb, "j">, FJ<2>,
AdditionalRequires<[RelocStatic]>, IsBranch;
def JR : MMRel, IndirectBranch<"jr", GPR32Opnd>, MTLO_FM<8>;
def BEQ : MMRel, CBranch<"beq", brtarget, seteq, GPR32Opnd>, BEQ_FM<4>;
def BEQL : MMRel, CBranch<"beql", brtarget, seteq, GPR32Opnd, 0>,
BEQ_FM<20>, ISA_MIPS2_NOT_32R6_64R6;
def BNE : MMRel, CBranch<"bne", brtarget, setne, GPR32Opnd>, BEQ_FM<5>;
def BNEL : MMRel, CBranch<"bnel", brtarget, setne, GPR32Opnd, 0>,
BEQ_FM<21>, ISA_MIPS2_NOT_32R6_64R6;
def BGEZ : MMRel, CBranchZero<"bgez", brtarget, setge, GPR32Opnd>,
BGEZ_FM<1, 1>;
def BGEZL : MMRel, CBranchZero<"bgezl", brtarget, setge, GPR32Opnd, 0>,
BGEZ_FM<1, 3>, ISA_MIPS2_NOT_32R6_64R6;
def BGTZ : MMRel, CBranchZero<"bgtz", brtarget, setgt, GPR32Opnd>,
BGEZ_FM<7, 0>;
def BGTZL : MMRel, CBranchZero<"bgtzl", brtarget, setgt, GPR32Opnd, 0>,
BGEZ_FM<23, 0>, ISA_MIPS2_NOT_32R6_64R6;
def BLEZ : MMRel, CBranchZero<"blez", brtarget, setle, GPR32Opnd>,
BGEZ_FM<6, 0>;
def BLEZL : MMRel, CBranchZero<"blezl", brtarget, setle, GPR32Opnd, 0>,
BGEZ_FM<22, 0>, ISA_MIPS2_NOT_32R6_64R6;
def BLTZ : MMRel, CBranchZero<"bltz", brtarget, setlt, GPR32Opnd>,
BGEZ_FM<1, 0>;
def BLTZL : MMRel, CBranchZero<"bltzl", brtarget, setlt, GPR32Opnd, 0>,
BGEZ_FM<1, 2>, ISA_MIPS2_NOT_32R6_64R6;
def B : UncondBranch<BEQ>;
def JAL : MMRel, JumpLink<"jal", calltarget>, FJ<3>;
let AdditionalPredicates = [NotInMicroMips] in {
def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM;
def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>;
}
def JALX : MMRel, JumpLink<"jalx", calltarget>, FJ<0x1D>,
ISA_MIPS32_NOT_32R6_64R6;
def BGEZAL : MMRel, BGEZAL_FT<"bgezal", brtarget, GPR32Opnd>, BGEZAL_FM<0x11>,
ISA_MIPS1_NOT_32R6_64R6;
def BGEZALL : MMRel, BGEZAL_FT<"bgezall", brtarget, GPR32Opnd, 0>,
BGEZAL_FM<0x13>, ISA_MIPS2_NOT_32R6_64R6;
def BLTZAL : MMRel, BGEZAL_FT<"bltzal", brtarget, GPR32Opnd>, BGEZAL_FM<0x10>,
ISA_MIPS1_NOT_32R6_64R6;
def BLTZALL : MMRel, BGEZAL_FT<"bltzall", brtarget, GPR32Opnd, 0>,
BGEZAL_FM<0x12>, ISA_MIPS2_NOT_32R6_64R6;
def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
def TAILCALL : TailCall<J>;
def TAILCALL_R : TailCallReg<GPR32Opnd, JR>;
// Indirect branches are matched as PseudoIndirectBranch/PseudoIndirectBranch64
// then are expanded to JR, JR64, JALR, or JALR64 depending on the ISA.
class PseudoIndirectBranchBase<RegisterOperand RO> :
MipsPseudo<(outs), (ins RO:$rs), [(brind RO:$rs)], IIBranch> {
let isTerminator=1;
let isBarrier=1;
let hasDelaySlot = 1;
let isBranch = 1;
let isIndirectBranch = 1;
}
def PseudoIndirectBranch : PseudoIndirectBranchBase<GPR32Opnd>;
// Return instructions are matched as a RetRA instruction, then ar expanded
// into PseudoReturn/PseudoReturn64 after register allocation. Finally,
// MipsAsmPrinter expands this into JR, JR64, JALR, or JALR64 depending on the
// ISA.
[mips][mips64r6] Use JALR for returns instead of JR (which is not available on MIPS32r6/MIPS64r6) Summary: RET, and RET_MM have been replaced by a pseudo named PseudoReturn. In addition a version with a 64-bit GPR named PseudoReturn64 has been added. Instruction selection for a return matches RetRA, which is expanded post register allocation to PseudoReturn/PseudoReturn64. During MipsAsmPrinter, this PseudoReturn/PseudoReturn64 are emitted as: - (JALR64 $zero, $rs) on MIPS64r6 - (JALR $zero, $rs) on MIPS32r6 - (JR_MM $rs) on microMIPS - (JR $rs) otherwise On MIPS32r6/MIPS64r6, 'jr $rs' is an alias for 'jalr $zero, $rs'. To aid development and review (specifically, to ensure all cases of jr are updated), these aliases are temporarily named 'r6.jr' instead of 'jr'. A follow up patch will change them back to the correct mnemonic. Added (JALR $zero, $rs) to MipsNaClELFStreamer's definition of an indirect jump, and removed it from its definition of a call. Note: I haven't accounted for MIPS64 in MipsNaClELFStreamer since it's doesn't appear to account for any MIPS64-specifics. The return instruction created as part of eh_return expansion is now expanded using expandRetRA() so we use the right return instruction on MIPS32r6/MIPS64r6 ('jalr $zero, $rs'). Also, fixed a misuse of isABI_N64() to detect 64-bit wide registers in expandEhReturn(). Reviewers: jkolek, vmedic, mseaborn, zoran.jovanovic, dsanders Reviewed By: dsanders Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D4268 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212604 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-09 10:16:07 +00:00
class PseudoReturnBase<RegisterOperand RO> : MipsPseudo<(outs), (ins RO:$rs),
[], IIBranch> {
let isTerminator = 1;
let isBarrier = 1;
let hasDelaySlot = 1;
let isReturn = 1;
let isCodeGenOnly = 1;
let hasCtrlDep = 1;
let hasExtraSrcRegAllocReq = 1;
}
def PseudoReturn : PseudoReturnBase<GPR32Opnd>;
// Exception handling related node and instructions.
// The conversion sequence is:
// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
// MIPSeh_return -> (stack change + indirect branch)
//
// MIPSeh_return takes the place of regular return instruction
// but takes two arguments (V1, V0) which are used for storing
// the offset and return address respectively.
def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst),
[(MIPSehret GPR32:$spoff, GPR32:$dst)]>;
def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff,
GPR64:$dst),
[(MIPSehret GPR64:$spoff, GPR64:$dst)]>;
}
/// Multiply and Divide Instructions.
def MULT : MMRel, Mult<"mult", II_MULT, GPR32Opnd, [HI0, LO0]>,
MULT_FM<0, 0x18>, ISA_MIPS1_NOT_32R6_64R6;
def MULTu : MMRel, Mult<"multu", II_MULTU, GPR32Opnd, [HI0, LO0]>,
MULT_FM<0, 0x19>, ISA_MIPS1_NOT_32R6_64R6;
def SDIV : MMRel, Div<"div", II_DIV, GPR32Opnd, [HI0, LO0]>,
MULT_FM<0, 0x1a>, ISA_MIPS1_NOT_32R6_64R6;
def UDIV : MMRel, Div<"divu", II_DIVU, GPR32Opnd, [HI0, LO0]>,
MULT_FM<0, 0x1b>, ISA_MIPS1_NOT_32R6_64R6;
def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>,
ISA_MIPS1_NOT_32R6_64R6;
def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>,
ISA_MIPS1_NOT_32R6_64R6;
let EncodingPredicates = []<Predicate>, // FIXME: Lack of HasStdEnc is probably a bug
AdditionalPredicates = [NotInMicroMips] in {
def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>,
ISA_MIPS1_NOT_32R6_64R6;
def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>,
ISA_MIPS1_NOT_32R6_64R6;
}
/// Sign Ext In Register Instructions.
def SEB : MMRel, StdMMR6Rel, SignExtInReg<"seb", i8, GPR32Opnd, II_SEB>,
SEB_FM<0x10, 0x20>, ISA_MIPS32R2;
def SEH : MMRel, StdMMR6Rel, SignExtInReg<"seh", i16, GPR32Opnd, II_SEH>,
SEB_FM<0x18, 0x20>, ISA_MIPS32R2;
/// Count Leading
def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd>, CLO_FM<0x20>,
ISA_MIPS32_NOT_32R6_64R6;
def CLO : MMRel, CountLeading1<"clo", GPR32Opnd>, CLO_FM<0x21>,
ISA_MIPS32_NOT_32R6_64R6;
/// Word Swap Bytes Within Halfwords
def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd>, SEB_FM<2, 0x20>, ISA_MIPS32R2;
/// No operation.
def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : MMRel, EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>;
// MADD*/MSUB*
def MADD : MMRel, MArithR<"madd", II_MADD, 1>, MULT_FM<0x1c, 0>,
ISA_MIPS32_NOT_32R6_64R6;
def MADDU : MMRel, MArithR<"maddu", II_MADDU, 1>, MULT_FM<0x1c, 1>,
ISA_MIPS32_NOT_32R6_64R6;
def MSUB : MMRel, MArithR<"msub", II_MSUB>, MULT_FM<0x1c, 4>,
ISA_MIPS32_NOT_32R6_64R6;
def MSUBU : MMRel, MArithR<"msubu", II_MSUBU>, MULT_FM<0x1c, 5>,
ISA_MIPS32_NOT_32R6_64R6;
let AdditionalPredicates = [NotDSP] in {
def PseudoMULT : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, II_MULT>,
ISA_MIPS1_NOT_32R6_64R6;
def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, II_MULTU>,
ISA_MIPS1_NOT_32R6_64R6;
def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsMFHI>, ISA_MIPS1_NOT_32R6_64R6;
def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsMFLO>, ISA_MIPS1_NOT_32R6_64R6;
def PseudoMTLOHI : PseudoMTLOHI<ACC64, GPR32>, ISA_MIPS1_NOT_32R6_64R6;
def PseudoMADD : MAddSubPseudo<MADD, MipsMAdd, II_MADD>,
ISA_MIPS32_NOT_32R6_64R6;
def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu, II_MADDU>,
ISA_MIPS32_NOT_32R6_64R6;
def PseudoMSUB : MAddSubPseudo<MSUB, MipsMSub, II_MSUB>,
ISA_MIPS32_NOT_32R6_64R6;
def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu, II_MSUBU>,
ISA_MIPS32_NOT_32R6_64R6;
}
def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, II_DIV,
0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6;
def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, II_DIVU,
0, 1, 1>, ISA_MIPS1_NOT_32R6_64R6;
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
def RDHWR : MMRel, ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
def EXT : MMRel, ExtBase<"ext", GPR32Opnd, uimm5, MipsExt>, EXT_FM<0>;
def INS : MMRel, InsBase<"ins", GPR32Opnd, uimm5, MipsIns>, EXT_FM<4>;
/// Move Control Registers From/To CPU Registers
def MFC0 : MFC3OP<"mfc0", GPR32Opnd, COP0Opnd>, MFC3OP_FM<0x10, 0>, ISA_MIPS32;
def MTC0 : MTC3OP<"mtc0", COP0Opnd, GPR32Opnd>, MFC3OP_FM<0x10, 4>, ISA_MIPS32;
def MFC2 : MFC3OP<"mfc2", GPR32Opnd, COP2Opnd>, MFC3OP_FM<0x12, 0>;
def MTC2 : MTC3OP<"mtc2", COP2Opnd, GPR32Opnd>, MFC3OP_FM<0x12, 4>;
class Barrier<string asmstr> : InstSE<(outs), (ins), asmstr, [], NoItinerary,
FrmOther, asmstr>;
def SSNOP : MMRel, Barrier<"ssnop">, BARRIER_FM<1>;
def EHB : MMRel, Barrier<"ehb">, BARRIER_FM<3>;
def PAUSE : MMRel, Barrier<"pause">, BARRIER_FM<5>, ISA_MIPS32R2;
// JR_HB and JALR_HB are defined here using the new style naming
// scheme because some of this code is shared with Mips32r6InstrInfo.td
// and because of that it doesn't follow the naming convention of the
// rest of the file. To avoid a mixture of old vs new style, the new
// style was chosen.
class JR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
dag OutOperandList = (outs);
dag InOperandList = (ins GPROpnd:$rs);
string AsmString = !strconcat(instr_asm, "\t$rs");
list<dag> Pattern = [];
}
class JALR_HB_DESC_BASE<string instr_asm, RegisterOperand GPROpnd> {
dag OutOperandList = (outs GPROpnd:$rd);
dag InOperandList = (ins GPROpnd:$rs);
string AsmString = !strconcat(instr_asm, "\t$rd, $rs");
list<dag> Pattern = [];
}
class JR_HB_DESC : InstSE<(outs), (ins), "", [], NoItinerary, FrmJ>,
JR_HB_DESC_BASE<"jr.hb", GPR32Opnd> {
let isBranch=1;
let isIndirectBranch=1;
let hasDelaySlot=1;
let isTerminator=1;
let isBarrier=1;
}
class JALR_HB_DESC : InstSE<(outs), (ins), "", [], NoItinerary, FrmJ>,
JALR_HB_DESC_BASE<"jalr.hb", GPR32Opnd> {
let isIndirectBranch=1;
let hasDelaySlot=1;
}
class JR_HB_ENC : JR_HB_FM<8>;
class JALR_HB_ENC : JALR_HB_FM<9>;
def JR_HB : JR_HB_DESC, JR_HB_ENC, ISA_MIPS32_NOT_32R6_64R6;
def JALR_HB : JALR_HB_DESC, JALR_HB_ENC, ISA_MIPS32;
class TLB<string asmstr> : InstSE<(outs), (ins), asmstr, [], NoItinerary,
FrmOther, asmstr>;
def TLBP : MMRel, TLB<"tlbp">, COP0_TLB_FM<0x08>;
def TLBR : MMRel, TLB<"tlbr">, COP0_TLB_FM<0x01>;
def TLBWI : MMRel, TLB<"tlbwi">, COP0_TLB_FM<0x02>;
def TLBWR : MMRel, TLB<"tlbwr">, COP0_TLB_FM<0x06>;
class CacheOp<string instr_asm, Operand MemOpnd> :
InstSE<(outs), (ins MemOpnd:$addr, uimm5:$hint),
!strconcat(instr_asm, "\t$hint, $addr"), [], NoItinerary, FrmOther,
instr_asm> {
let DecoderMethod = "DecodeCacheOp";
}
def CACHE : MMRel, CacheOp<"cache", mem>, CACHEOP_FM<0b101111>,
INSN_MIPS3_32_NOT_32R6_64R6;
def PREF : MMRel, CacheOp<"pref", mem>, CACHEOP_FM<0b110011>,
INSN_MIPS3_32_NOT_32R6_64R6;
//===----------------------------------------------------------------------===//
// Instruction aliases
//===----------------------------------------------------------------------===//
def : MipsInstAlias<"move $dst, $src",
(ADDu GPR32Opnd:$dst, GPR32Opnd:$src,ZERO), 1>,
GPR_32 {
let AdditionalPredicates = [NotInMicroMips];
}
def : MipsInstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>,
ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"addu $rs, $rt, $imm",
(ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : MipsInstAlias<"addu $rs, $imm",
(ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>;
def : MipsInstAlias<"add $rs, $rt, $imm",
(ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>,
ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"add $rs, $imm",
(ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>,
ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"and $rs, $rt, $imm",
(ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : MipsInstAlias<"and $rs, $imm",
(ANDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>;
def : MipsInstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>;
let Predicates = [NotInMicroMips] in {
def : MipsInstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>;
}
def : MipsInstAlias<"jalr.hb $rs", (JALR_HB RA, GPR32Opnd:$rs), 1>, ISA_MIPS32;
def : MipsInstAlias<"not $rt, $rs",
(NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>;
def : MipsInstAlias<"neg $rt, $rs",
(SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
def : MipsInstAlias<"negu $rt",
(SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rt), 0>;
def : MipsInstAlias<"negu $rt, $rs",
(SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
def : MipsInstAlias<"slt $rs, $rt, $imm",
(SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : MipsInstAlias<"sltu $rt, $rs, $imm",
(SLTiu GPR32Opnd:$rt, GPR32Opnd:$rs, simm16:$imm), 0>;
def : MipsInstAlias<"xor $rs, $rt, $imm",
(XORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
def : MipsInstAlias<"xor $rs, $imm",
(XORi GPR32Opnd:$rs, GPR32Opnd:$rs, uimm16:$imm), 0>;
def : MipsInstAlias<"or $rs, $rt, $imm",
(ORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
def : MipsInstAlias<"or $rs, $imm",
(ORi GPR32Opnd:$rs, GPR32Opnd:$rs, uimm16:$imm), 0>;
let AdditionalPredicates = [NotInMicroMips] in {
def : MipsInstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
}
def : MipsInstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, COP0Opnd:$rd, 0), 0>;
def : MipsInstAlias<"mtc0 $rt, $rd", (MTC0 COP0Opnd:$rd, GPR32Opnd:$rt, 0), 0>;
def : MipsInstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, COP2Opnd:$rd, 0), 0>;
def : MipsInstAlias<"mtc2 $rt, $rd", (MTC2 COP2Opnd:$rd, GPR32Opnd:$rt, 0), 0>;
let AdditionalPredicates = [NotInMicroMips] in {
def : MipsInstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>;
}
def : MipsInstAlias<"bnez $rs,$offset",
(BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
def : MipsInstAlias<"bnezl $rs,$offset",
(BNEL GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
def : MipsInstAlias<"beqz $rs,$offset",
(BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
def : MipsInstAlias<"beqzl $rs,$offset",
(BEQL GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
def : MipsInstAlias<"syscall", (SYSCALL 0), 1>;
def : MipsInstAlias<"break", (BREAK 0, 0), 1>;
def : MipsInstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
let AdditionalPredicates = [NotInMicroMips] in {
def : MipsInstAlias<"ei", (EI ZERO), 1>, ISA_MIPS32R2;
}
def : MipsInstAlias<"di", (DI ZERO), 1>, ISA_MIPS32R2;
def : MipsInstAlias<"teq $rs, $rt",
(TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
def : MipsInstAlias<"tge $rs, $rt",
(TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
def : MipsInstAlias<"tgeu $rs, $rt",
(TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
def : MipsInstAlias<"tlt $rs, $rt",
(TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
def : MipsInstAlias<"tltu $rs, $rt",
(TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
def : MipsInstAlias<"tne $rs, $rt",
(TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>, ISA_MIPS2;
def : MipsInstAlias<"sll $rd, $rt, $rs",
(SLLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>;
def : MipsInstAlias<"sub, $rd, $rs, $imm",
(ADDi GPR32Opnd:$rd, GPR32Opnd:$rs,
InvertedImOperand:$imm), 0>, ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"sub $rs, $imm",
(ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, InvertedImOperand:$imm),
0>, ISA_MIPS1_NOT_32R6_64R6;
def : MipsInstAlias<"subu, $rd, $rs, $imm",
(ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs,
InvertedImOperand:$imm), 0>;
def : MipsInstAlias<"subu $rs, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs,
InvertedImOperand:$imm), 0>;
def : MipsInstAlias<"sra $rd, $rt, $rs",
(SRAV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>;
def : MipsInstAlias<"srl $rd, $rt, $rs",
(SRLV GPR32Opnd:$rd, GPR32Opnd:$rt, GPR32Opnd:$rs), 0>;
def : MipsInstAlias<"sdbbp", (SDBBP 0)>, ISA_MIPS32_NOT_32R6_64R6;
def : MipsInstAlias<"sync",
(SYNC 0), 1>, ISA_MIPS2;
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions
//===----------------------------------------------------------------------===//
class LoadImmediate32<string instr_asm, Operand Od, RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
!strconcat(instr_asm, "\t$rt, $imm32")> ;
def LoadImm32 : LoadImmediate32<"li", uimm5, GPR32Opnd>;
class LoadAddressFromReg32<string instr_asm, Operand MemOpnd,
RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
!strconcat(instr_asm, "\t$rt, $addr")> ;
def LoadAddrReg32 : LoadAddressFromReg32<"la", mem, GPR32Opnd>;
class LoadAddressFromImm32<string instr_asm, Operand Od, RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
!strconcat(instr_asm, "\t$rt, $imm32")> ;
def LoadAddrImm32 : LoadAddressFromImm32<"la", uimm5, GPR32Opnd>;
def JalTwoReg : MipsAsmPseudoInst<(outs GPR32Opnd:$rd), (ins GPR32Opnd:$rs),
"jal\t$rd, $rs"> ;
def JalOneReg : MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs),
"jal\t$rs"> ;
let hasDelaySlot = 1 in {
def BneImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt),
(ins imm64:$imm64, brtarget:$offset),
"bne\t$rt, $imm64, $offset">;
def BeqImm : MipsAsmPseudoInst<(outs GPR32Opnd:$rt),
(ins imm64:$imm64, brtarget:$offset),
"beq\t$rt, $imm64, $offset">;
class CondBranchPseudo<string instr_asm> :
MipsAsmPseudoInst<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt,
brtarget:$offset),
!strconcat(instr_asm, "\t$rs, $rt, $offset")>;
}
def BLT : CondBranchPseudo<"blt">;
def BLE : CondBranchPseudo<"ble">;
def BGE : CondBranchPseudo<"bge">;
def BGT : CondBranchPseudo<"bgt">;
def BLTU : CondBranchPseudo<"bltu">;
def BLEU : CondBranchPseudo<"bleu">;
def BGEU : CondBranchPseudo<"bgeu">;
def BGTU : CondBranchPseudo<"bgtu">;
def Ulhu : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr),
"ulhu\t$rt, $addr">, ISA_MIPS1_NOT_32R6_64R6;
def Ulw : MipsAsmPseudoInst<(outs GPR32Opnd:$rt), (ins mem:$addr),
"ulw\t$rt, $addr">, ISA_MIPS1_NOT_32R6_64R6;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Load/store pattern templates.
class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
// Small immediates
let AdditionalPredicates = [NotInMicroMips] in {
def : MipsPat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : MipsPat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
}
def : MipsPat<(i32 immLow16Zero:$in),
(LUi (HI16 imm:$in))>;
// Arbitrary immediates
def : MipsPat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Carry MipsPatterns
def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs),
(SUBu GPR32:$lhs, GPR32:$rhs)>;
let AdditionalPredicates = [NotDSP] in {
def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs),
(ADDu GPR32:$lhs, GPR32:$rhs)>;
def : MipsPat<(addc GPR32:$src, immSExt16:$imm),
(ADDiu GPR32:$src, imm:$imm)>;
}
// Support multiplication for pre-Mips32 targets that don't have
// the MUL instruction.
def : MipsPat<(mul GPR32:$lhs, GPR32:$rhs),
(PseudoMFLO (PseudoMULT GPR32:$lhs, GPR32:$rhs))>,
ISA_MIPS1_NOT_32R6_64R6;
// SYNC
def : MipsPat<(MipsSync (i32 immz)),
(SYNC 0)>, ISA_MIPS2;
// Call
def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
//def : MipsPat<(MipsJmpLink GPR32:$dst),
// (JALR GPR32:$dst)>;
// Tail call
def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
(TAILCALL tglobaladdr:$dst)>;
def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
(TAILCALL texternalsym:$dst)>;
// hi/lo relocs
def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu GPR32:$hi, tglobaladdr:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)),
(ADDiu GPR32:$hi, tblockaddress:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)),
(ADDiu GPR32:$hi, tjumptable:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)),
(ADDiu GPR32:$hi, tconstpool:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)),
(ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>;
// gp_rel relocs
def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)),
(ADDiu GPR32:$gp, tglobaladdr:$in)>;
def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)),
(ADDiu GPR32:$gp, tconstpool:$in)>;
// wrapper_pic
class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
MipsPat<(MipsWrapper RC:$gp, node:$in),
(ADDiuOp RC:$gp, node:$in)>;
def : WrapperPat<tglobaladdr, ADDiu, GPR32>;
def : WrapperPat<tconstpool, ADDiu, GPR32>;
def : WrapperPat<texternalsym, ADDiu, GPR32>;
def : WrapperPat<tblockaddress, ADDiu, GPR32>;
def : WrapperPat<tjumptable, ADDiu, GPR32>;
def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>;
let AdditionalPredicates = [NotInMicroMips] in {
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
// Mips does not have "not", so we expand our way
def : MipsPat<(not GPR32:$in),
(NOR GPR32Opnd:$in, ZERO)>;
}
// extended loads
def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>;
def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>;
def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
// peepholes
def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
// brcond patterns
multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
Instruction SLTiuOp, Register ZEROReg> {
def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
(BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
(BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
(BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
(BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
(BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
(BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond RC:$cond, bb:$dst),
(BNEOp RC:$cond, ZEROReg, bb:$dst)>;
}
defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
(BLEZ i32:$lhs, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
(BGEZ i32:$lhs, bb:$dst)>;
// setcc patterns
multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
Instruction SLTuOp, Register ZEROReg> {
def : MipsPat<(seteq RC:$lhs, 0),
(SLTiuOp RC:$lhs, 1)>;
def : MipsPat<(setne RC:$lhs, 0),
(SLTuOp ZEROReg, RC:$lhs)>;
def : MipsPat<(seteq RC:$lhs, RC:$rhs),
(SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
def : MipsPat<(setne RC:$lhs, RC:$rhs),
(SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
}
multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : MipsPat<(setle RC:$lhs, RC:$rhs),
(XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
def : MipsPat<(setule RC:$lhs, RC:$rhs),
(XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
}
multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : MipsPat<(setgt RC:$lhs, RC:$rhs),
(SLTOp RC:$rhs, RC:$lhs)>;
def : MipsPat<(setugt RC:$lhs, RC:$rhs),
(SLTuOp RC:$rhs, RC:$lhs)>;
}
multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : MipsPat<(setge RC:$lhs, RC:$rhs),
(XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
def : MipsPat<(setuge RC:$lhs, RC:$rhs),
(XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
}
multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
Instruction SLTiuOp> {
def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
(XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
(XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
}
defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>;
defm : SetlePats<GPR32, SLT, SLTu>;
defm : SetgtPats<GPR32, SLT, SLTu>;
defm : SetgePats<GPR32, SLT, SLTu>;
defm : SetgeImmPats<GPR32, SLTi, SLTiu>;
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
// bswap pattern
def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>;
// Load halfword/word patterns.
let AddedComplexity = 40 in {
def : LoadRegImmPat<LBu, i32, zextloadi8>;
def : LoadRegImmPat<LH, i32, sextloadi16>;
let AdditionalPredicates = [NotInMicroMips] in {
def : LoadRegImmPat<LW, i32, load>;
}
}
//===----------------------------------------------------------------------===//
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
// Floating Point Support
//===----------------------------------------------------------------------===//
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
include "MipsInstrFPU.td"
include "Mips64InstrInfo.td"
include "MipsCondMov.td"
include "Mips32r6InstrInfo.td"
include "Mips64r6InstrInfo.td"
//
// Mips16
include "Mips16InstrFormats.td"
include "Mips16InstrInfo.td"
// DSP
include "MipsDSPInstrFormats.td"
include "MipsDSPInstrInfo.td"
// MSA
include "MipsMSAInstrFormats.td"
include "MipsMSAInstrInfo.td"
// Micromips
include "MicroMipsInstrFormats.td"
include "MicroMipsInstrInfo.td"
include "MicroMipsInstrFPU.td"
// Micromips r6
include "MicroMips32r6InstrFormats.td"
include "MicroMips32r6InstrInfo.td"