where the other_half of the movt and movw relocation entries needs to get set
and only with the 16 bits of the other half.
rdar://10038370
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160978 91177308-0d34-0410-b5e6-96231b3b80d8
Before accessing a node as a ConstandSDNode, make sure it actually is one.
No testcase of non-trivial size.
rdar://11948669
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160735 91177308-0d34-0410-b5e6-96231b3b80d8
intrinsics. The second instruction(s) to be handled are the vector versions
of count set bits (ctpop).
The changes here are to clang so that it generates a target independent
vector ctpop when it sees an ARM dependent vector bits set count. The changes
in llvm are to match the target independent vector ctpop and in
VMCore/AutoUpgrade.cpp to update any existing bc files containing ARM
dependent vector pop counts with target-independent ctpops. There are also
changes to an existing test case in llvm for ARM vector count instructions and
to a test for the bitcode upgrade.
<rdar://problem/11892519>
There is deliberately no test for the change to clang, as so far as I know, no
consensus has been reached regarding how to test neon instructions in clang;
q.v. <rdar://problem/8762292>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160410 91177308-0d34-0410-b5e6-96231b3b80d8
intrinsics with target-indepdent intrinsics. The first instruction(s) to be
handled are the vector versions of count leading zeros (ctlz).
The changes here are to clang so that it generates a target independent
vector ctlz when it sees an ARM dependent vector ctlz. The changes in llvm
are to match the target independent vector ctlz and in VMCore/AutoUpgrade.cpp
to update any existing bc files containing ARM dependent vector ctlzs with
target-independent ctlzs. There are also changes to an existing test case in
llvm for ARM vector count instructions and a new test for the bitcode upgrade.
<rdar://problem/11831778>
There is deliberately no test for the change to clang, as so far as I know, no
consensus has been reached regarding how to test neon instructions in clang;
q.v. <rdar://problem/8762292>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160200 91177308-0d34-0410-b5e6-96231b3b80d8
Function argument registers are added to the call SDNode, but
InstrEmitter now knows how to make those operands implicit, and the call
instruction doesn't have to be variadic.
Explicit register operands should only be those that are encoded in the
instruction, implicit register operands are for extra dependencies like
call argument and return values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160188 91177308-0d34-0410-b5e6-96231b3b80d8
It is safe if CPSR is killed or re-defined.
When we are done with the basic block, check whether CPSR is live-out.
Do not optimize away cmp if CPSR is live-out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160090 91177308-0d34-0410-b5e6-96231b3b80d8
Some NEON instructions want to match against normal SDNodes for some
operand types and Intrinsics for others. For example, CTLZ. To enable this,
switch from explicitly requiring Intrinsic on the class templates to using
SDPatternOperator instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159974 91177308-0d34-0410-b5e6-96231b3b80d8
subtarget CPU descriptions and support new features of
MachineScheduler.
MachineModel has three categories of data:
1) Basic properties for coarse grained instruction cost model.
2) Scheduler Read/Write resources for simple per-opcode and operand cost model (TBD).
3) Instruction itineraties for detailed per-cycle reservation tables.
These will all live side-by-side. Any subtarget can use any
combination of them. Instruction itineraries will not change in the
near term. In the long run, I expect them to only be relevant for
in-order VLIW machines that have complex contraints and require a
precise scheduling/bundling model. Once itineraries are only actively
used by VLIW-ish targets, they could be replaced by something more
appropriate for those targets.
This tablegen backend rewrite sets things up for introducing
MachineModel type #2: per opcode/operand cost model.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159891 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it possible to just use a zero value to represent "no pass", so
the phony NoPassID global variable is no longer needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159568 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary step toward having TargetPassConfig be able to
start and stop the compilation at specified passes for unit testing
and debugging. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159567 91177308-0d34-0410-b5e6-96231b3b80d8
My last checkin was apparently not the branch I intended. It was missing one change (added by chandlerc), and contained a spurious change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159548 91177308-0d34-0410-b5e6-96231b3b80d8
Use getUniqueVRegDef.
Replace a loop with existing interfaces: modifiesRegister and readsRegister.
Factor out code into inline functions and simplify the code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159470 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetInstrInfo::getNumMicroOps API does not change, but soon it
will be used by MachineScheduler. Now each subtarget can specify the
number of micro-ops per itinerary class. For ARM, this is currently
always dynamic (-1), because it is used for load/store multiple which
depends on the number of register operands.
Zero is now a valid number of micro-ops. This can be used for
nop pseudo-instructions or instructions that the hardware can squash
during dispatch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159406 91177308-0d34-0410-b5e6-96231b3b80d8
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159312 91177308-0d34-0410-b5e6-96231b3b80d8
up to r158925 were handled as processor specific. Making them
generic and putting tests for these modifiers in the CodeGen/Generic
directory caused a number of targets to fail.
This commit addresses that problem by having the targets call
the generic routine for generic modifiers that they don't currently
have explicit code for.
For now only generic print operands 'c' and 'n' are supported.vi
Affected files:
test/CodeGen/Generic/asm-large-immediate.ll
lib/Target/PowerPC/PPCAsmPrinter.cpp
lib/Target/NVPTX/NVPTXAsmPrinter.cpp
lib/Target/ARM/ARMAsmPrinter.cpp
lib/Target/XCore/XCoreAsmPrinter.cpp
lib/Target/X86/X86AsmPrinter.cpp
lib/Target/Hexagon/HexagonAsmPrinter.cpp
lib/Target/CellSPU/SPUAsmPrinter.cpp
lib/Target/Sparc/SparcAsmPrinter.cpp
lib/Target/MBlaze/MBlazeAsmPrinter.cpp
lib/Target/Mips/MipsAsmPrinter.cpp
MSP430 isn't represented because it did not even run with
the long existing 'c' modifier and it was not apparent what
needs to be done to get it inline asm ready.
Contributer: Jack Carter
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159203 91177308-0d34-0410-b5e6-96231b3b80d8
More condition codes are included when deciding whether to remove cmp after
a sub instruction. Specifically, we extend from GE|LT|GT|LE to
GE|LT|GT|LE|HS|LS|HI|LO|EQ|NE. If we have "sub a, b; cmp b, a; movhs", we
should be able to replace with "sub a, b; movls".
rdar: 11725965
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159166 91177308-0d34-0410-b5e6-96231b3b80d8
There are patterns to handle immediates when they fit in the immediate field.
e.g. %sub = add i32 %x, -123
=> sub r0, r0, #123
Add patterns to catch immediates that do not fit but should be materialized
with a single movw instruction rather than movw + movt pair.
e.g. %sub = add i32 %x, -65535
=> movw r1, #65535
sub r0, r0, r1
rdar://11726136
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159057 91177308-0d34-0410-b5e6-96231b3b80d8
As an example of how the custom DiagnosticType can be used to provide
better operand-mismatch diagnostics, add a custom diagnostic for
the imm0_15 operand class used for several system instructions.
Update the tests to expect the improved diagnostic.
rdar://8987109
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159051 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it explicit when ScoreboardHazardRecognizer will be used.
"GenericItineraries" would only make sense if it contained real
itinerary values and still required ScoreboardHazardRecognizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158963 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minor drive-by fix with no robust way to unit test.
As an example see neon-div.ll:
SU(16): %Q8<def> = VMOVLsv4i32 %D17, pred:14, pred:%noreg, %Q8<imp-use,kill>
val SU(1): Latency=2 Reg=%Q8
...should be latency=1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158960 91177308-0d34-0410-b5e6-96231b3b80d8
Minor drive by fix to cleanup latency computation. Calling
getOperandLatency with a deliberately incorrect operand index does not
give you the latency you want.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158959 91177308-0d34-0410-b5e6-96231b3b80d8
boolean flag to an enum: { Fast, Standard, Strict } (default = Standard).
This option controls the creation by optimizations of fused FP ops that store
intermediate results in higher precision than IEEE allows (E.g. FMAs). The
behavior of this option is intended to match the behaviour specified by a
soon-to-be-introduced frontend flag: '-ffuse-fp-ops'.
Fast mode - allows formation of fused FP ops whenever they're profitable.
Standard mode - allow fusion only for 'blessed' FP ops. At present the only
blessed op is the fmuladd intrinsic. In the future more blessed ops may be
added.
Strict mode - allow fusion only if/when it can be proven that the excess
precision won't effect the result.
Note: This option only controls formation of fused ops by the optimizers. Fused
operations that are explicitly requested (e.g. FMA via the llvm.fma.* intrinsic)
will always be honored, regardless of the value of this option.
Internally TargetOptions::AllowExcessFPPrecision has been replaced by
TargetOptions::AllowFPOpFusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158956 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158757 91177308-0d34-0410-b5e6-96231b3b80d8
The condition code didn't actually matter for arm "b" instructions,
unlike "bl". It should just use the R_ARM_JUMP24 reloc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158722 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLoweringObjectFileELF. Use this to support it on X86. Unlike ARM,
on X86 it is not easy to find out if .init_array should be used or not, so
the decision is made via TargetOptions and defaults to off.
Add a command line option to llc that enables it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158692 91177308-0d34-0410-b5e6-96231b3b80d8
The NOP, WFE, WFI, SEV and YIELD instructions are all hints w/
a different immediate value in bits [7,0]. Define a generic HINT
instruction and refactor NOP, WFI, WFI, SEV and YIELD to be
assembly aliases of that.
rdar://11600518
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158674 91177308-0d34-0410-b5e6-96231b3b80d8
when a compile time constant is known. This occurs when implicitly zero
extending function arguments from 16 bits to 32 bits. The 8 bit case doesn't
need to be handled, as the 8 bit constants are encoded directly, thereby
not needing a separate load instruction to form the constant into a register.
<rdar://problem/11481151>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158659 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize abs(x-y)
FROM
sub, movs, rsbmi
TO
subs, rsbmi
For abs, we will use cmp instead of movs. This is necessary because we already
have an existing peephole pass which optimizes away cmp following sub.
rdar: 11633193
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158551 91177308-0d34-0410-b5e6-96231b3b80d8
We turned off the CMN instruction because it had semantics which we weren't
getting correct. If we are comparing with an immediate, then it's okay to use
the CMN instruction.
<rdar://problem/7569620>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158302 91177308-0d34-0410-b5e6-96231b3b80d8
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158090 91177308-0d34-0410-b5e6-96231b3b80d8
This allows a subtarget to explicitly specify the issue width and
other properties without providing pipeline stage details for every
instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157979 91177308-0d34-0410-b5e6-96231b3b80d8
when a compile time constant is known. This occurs when implicitly zero
extending function arguments from 16 bits to 32 bits.
<rdar://problem/11481151>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157966 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157854 91177308-0d34-0410-b5e6-96231b3b80d8
We handle struct byval by inserting a pseudo op, which will be expanded to a
loop at ExpandISelPseudos.
A separate patch for clang will be submitted to enable struct byval.
rdar://9877866
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157793 91177308-0d34-0410-b5e6-96231b3b80d8
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157479 91177308-0d34-0410-b5e6-96231b3b80d8
32-bit offset jump tables just use real branch instructions and so aren't
marked as data regions. We were still emitting the .end_data_region
marker though, which assert()ed.
rdar://11499158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157221 91177308-0d34-0410-b5e6-96231b3b80d8
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157062 91177308-0d34-0410-b5e6-96231b3b80d8
the 0b10 mask encoding bits. Make MSR APSR writes without a _<bits> qualifier
an alias for MSR APSR_nzcvq even though ARM as deprecated it use. Also add
support for suffixes (_nzcvq, _g, _nzcvqg) for APSR versions. Some FIXMEs in
the code for better error checking when versions shouldn't be used.
rdar://11457025
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157019 91177308-0d34-0410-b5e6-96231b3b80d8
Add the MCRegisterInfo to the factories and constructors.
Patch by Tom Stellard <Tom.Stellard@amd.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156828 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156599 91177308-0d34-0410-b5e6-96231b3b80d8
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156550 91177308-0d34-0410-b5e6-96231b3b80d8
The getPointerRegClass() hook can return register classes that depend on
the calling convention of the current function (ptr_rc_tailcall).
So far, we have been able to infer the calling convention from the
subtarget alone, but as we add support for multiple calling conventions
per target, that no longer works.
Patch by Yiannis Tsiouris!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156328 91177308-0d34-0410-b5e6-96231b3b80d8
This will be used to determine whether it's profitable to turn a select into a
branch when the branch is likely to be predicted.
Currently enabled for everything but Atom on X86 and Cortex-A9 devices on ARM.
I'm not entirely happy with the name of this flag, suggestions welcome ;)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156233 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the logic for selecting a TLS model to a single place,
instead of the previous three (ARM, Mips, and X86 which already
uses this function).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156162 91177308-0d34-0410-b5e6-96231b3b80d8
for the assembler and disassembler. Which were not being set/read correctly
for offsets greater than 22 bits in some cases.
Changes to lib/Target/ARM/ARMAsmBackend.cpp from Gideon Myles!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156118 91177308-0d34-0410-b5e6-96231b3b80d8
Expressions for movw/movt don't always have an :upper16: or :lower16:
on them and that's ok. When they don't, it's just a plain [0-65536]
immediate result, effectively the same as a :lower16: variant kind.
rdar://10550147
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155941 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetPassManager's default constructor wants to initialize the PassManager
to 'null'. But it's illegal to bind a null reference to a null l-value. Make the
ivar a pointer instead.
PR12468
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155902 91177308-0d34-0410-b5e6-96231b3b80d8
Replace some assert() calls w/ actual diagnostics. In a perfect world,
there'd be range checks on these values long before things ever reached
this code. For now, though, issuing a better-late-than-never diagnostic
is still a big improvement over assert().
rdar://11347287
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155851 91177308-0d34-0410-b5e6-96231b3b80d8
This was exposed by SingleSource/UnitTests/Vector/constpool.c.
The computed size of a basic block isn't always a multiple of its known
alignment, and that can introduce extra alignment padding after the
block.
<rdar://problem/11347135>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155845 91177308-0d34-0410-b5e6-96231b3b80d8
ARM BUILD_VECTORs created after type legalization cannot use i8 or i16
operands, since those types are not legal. Instead use i32 operands, which
will be implicitly truncated by the BUILD_VECTOR to match the element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155824 91177308-0d34-0410-b5e6-96231b3b80d8
The code could search past the end of the basic block when there was
already a constant pool entry after the block.
Test case with giant basic block in SingleSource/UnitTests/Vector/constpool.c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155753 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure when parsing the Thumb1 sp+register ADD instruction that
the source and destination operands match. In thumb2, just use the
wide encoding if they don't. In Thumb1, issue a diagnostic.
rdar://11219154
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155748 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, ARMConstantIslandPass would conservatively compute the
address of an aligned basic block as:
RoundUpToAlignment(Offset + UnknownPadding)
This worked fine for the layout algorithm itself, but it could fool the
verify() function because it accounts for alignment padding twice: Once
when adding the worst case UnknownPadding, and again by rounding up the
fictional block offset. This meant that when optimizeThumb2Instructions
would shrink an instruction, the conservative distance estimate could
grow. That shouldn't be possible since the woorst case alignment padding
wss already included.
This patch drops the use of RoundUpToAlignment, and depends only on
worst case padding to compute conservative block offsets. This has the
weird effect that the computed offset for an aligned block may not be
aligned.
The important difference is that shrinking an instruction can never
cause the estimated distance between two instructions to grow. The
estimated distance is always larger than the real distance that only the
assembler knows.
<rdar://problem/11339352>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155744 91177308-0d34-0410-b5e6-96231b3b80d8
The base address for the PC-relative load is Align(PC,4), so it's the
address of the word containing the 16-bit instruction, not the address
of the instruction itself. Ugh.
rdar://11314619
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155659 91177308-0d34-0410-b5e6-96231b3b80d8
On some cores it's a bad idea for performance to mix VFP and NEON instructions
and since these patterns are NEON anyway, the NEON load should be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155630 91177308-0d34-0410-b5e6-96231b3b80d8
the feature set of v7a. This comes about if the user specifies something like
-arch armv7 -mcpu=cortex-m3. We shouldn't be generating instructions such as
uxtab in this case.
rdar://11318438
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155601 91177308-0d34-0410-b5e6-96231b3b80d8
When an instruction match is found, but the subtarget features it
requires are not available (missing floating point unit, or thumb vs arm
mode, for example), issue a diagnostic that identifies what the feature
mismatch is.
rdar://11257547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155499 91177308-0d34-0410-b5e6-96231b3b80d8
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155395 91177308-0d34-0410-b5e6-96231b3b80d8
Use the new TwoOperandAliasConstraint to handle lots of the two-operand aliases
for NEON instructions. There's still more to go, but this is a good chunk of
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155210 91177308-0d34-0410-b5e6-96231b3b80d8
instructions with writebacks. And add test a case for all opcodes handed by
DecodeVLD2DupInstruction() in ARMDisassembler.cpp .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154884 91177308-0d34-0410-b5e6-96231b3b80d8
As an example, attach range info to the "invalid instruction" message:
$ clang -arch arm -c asm.c
asm.c:2:11: error: invalid instruction
__asm__("foo r0");
^
<inline asm>:1:2: note: instantiated into assembly here
foo r0
^~~
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154765 91177308-0d34-0410-b5e6-96231b3b80d8
targets so if the branch target has the high bit set it does not get printed as:
beq 0xffffffff8008c404
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154685 91177308-0d34-0410-b5e6-96231b3b80d8
While there is an encoding for it in VUZP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11222366
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154511 91177308-0d34-0410-b5e6-96231b3b80d8
While there is an encoding for it in VZIP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11221911
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154505 91177308-0d34-0410-b5e6-96231b3b80d8
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154480 91177308-0d34-0410-b5e6-96231b3b80d8
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154456 91177308-0d34-0410-b5e6-96231b3b80d8
We were incorrectly conflating some add variants which don't have a
cc_out operand with the mirroring sub encodings, which do. Part of the
awesome non-orthogonality legacy of thumb1. Similarly, handling of
add/sub of an immediate was sometimes incorrectly removing the cc_out
operand for add/sub register variants.
rdar://11216577
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154411 91177308-0d34-0410-b5e6-96231b3b80d8
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154370 91177308-0d34-0410-b5e6-96231b3b80d8
in-register, such that we can use a single vector store rather then a
series of scalar stores.
For func_4_8 the generated code
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vmov.u16 r0, d16[3]
strb r0, [r2, #3]
vmov.u16 r0, d16[2]
strb r0, [r2, #2]
vmov.u16 r0, d16[1]
strb r0, [r2, #1]
vmov.u16 r0, d16[0]
strb r0, [r2]
bx lr
becomes
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vuzp.8 d16, d17
vst1.32 {d16[0]}, [r2, :32]
bx lr
I'm not fond of how this combine pessimizes 2012-03-13-DAGCombineBug.ll,
but I couldn't think of a way to judiciously apply this combine.
This
ldrh r0, [r0, #4]
strh r0, [r1]
becomes
vldr d16, [r0]
vmov.u16 r0, d16[2]
vmov.32 d16[0], r0
vuzp.16 d16, d17
vst1.32 {d16[0]}, [r1, :32]
PR11158
rdar://10703339
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154340 91177308-0d34-0410-b5e6-96231b3b80d8
The tLDRr instruction with the last register operand set to the zero register
prints in assembly as if no register was specified, and the assembler encodes
it as a tLDRi instruction with a zero immediate. With the integrated assembler,
that zero register gets emitted as "r0", so we get "ldr rx, [ry, r0]" which
is broken. Emit the instruction as tLDRi with a zero immediate. I don't
know if there's a good way to write a testcase for this. Suggestions welcome.
Opportunities for follow-up work:
1) The asm printer should complain if a non-optional register operand is set
to the zero register, instead of silently dropping it.
2) The integrated assembler should complain in the same situation, instead of
silently emitting the operand as "r0".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154261 91177308-0d34-0410-b5e6-96231b3b80d8
After register masks were introdruced to represent the call clobbers, it
is no longer necessary to have duplicate instruction for iOS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154209 91177308-0d34-0410-b5e6-96231b3b80d8
ARM and Thumb2 mode can use cmn instructions to compare against negative
immediates. Thumb1 mode can't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154183 91177308-0d34-0410-b5e6-96231b3b80d8
We had special instructions for iOS because r9 is call-clobbered, but
that is represented dynamically by the register mask operands now, so
there is no need for the pseudo-instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154144 91177308-0d34-0410-b5e6-96231b3b80d8
The load/store optimizer splits LDRD/STRD into two instructions when the
register pairing doesn't work out. For negative offsets in Thumb2, it uses
t2STRi8 to do that. That's fine, except for the case when the offset is in
the range [-4,-1]. In that case, we'll also form a second t2STRi8 with
the original offset plus 4, resulting in a t2STRi8 with a non-negative
offset, which ends up as if it were an STRT, which is completely bogus.
Similarly for loads.
No testcase, unfortunately, as any I've been able to construct is both large
and extremely fragile.
rdar://11193937
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154141 91177308-0d34-0410-b5e6-96231b3b80d8
'add r2, #-1024' should just use 'sub r2, #1024' rather than erroring out.
Thumb1 aliases for adding a negative immediate to the stack pointer,
also.
rdar://11192734
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154123 91177308-0d34-0410-b5e6-96231b3b80d8
A MOVCCr instruction can be commuted by inverting the condition. This
can help reduce register pressure and remove unnecessary copies in some
cases.
<rdar://problem/11182914>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154033 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
ARMConstantIslandPass still has bugs where jump table compression can
cause constant pool entries to go out of range.
Add a safety margin of 2 bytes when placing constant islands, but use
the real max displacement for verification.
<rdar://problem/11156595>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153789 91177308-0d34-0410-b5e6-96231b3b80d8
The 8-bit payload is not contiguous in the opcode. Move the upper nibble
over 4 bits into the correct place.
rdar://11158641
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153780 91177308-0d34-0410-b5e6-96231b3b80d8
When an immediate is both a value [t2_]so_imm and a [t2_]so_imm_neg,
we want to use the non-negated form to make sure we prefer the normal
encoding, not the aliased encoding via the negation of, e.g., 'cmp.w'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153770 91177308-0d34-0410-b5e6-96231b3b80d8
Make the non-tied register operand names line up with what the base
class encoding handler expects.
rdar://11157236
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153766 91177308-0d34-0410-b5e6-96231b3b80d8
For 'adds r2, r2, #56' outside of an IT block, the 16-bit encoding T2
can be used for this syntax. Prefer the narrow encoding when possible.
rdar://11156277
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153759 91177308-0d34-0410-b5e6-96231b3b80d8
This pass splits basic blocks to insert constant islands, and it
doesn't recompute the live-in lists. No later passes depend on accurate
liveness information.
This fixes PR12410 where the machine code verifier was complaining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153700 91177308-0d34-0410-b5e6-96231b3b80d8
We are sometimes allocatinog from the DPair register class which
contains odd-even pairs in addition to the Q registers.
Place the Q registers first in the DPair allocation order as they can be
copied with a single instruction. The odd-even pairs should only be
allocated as a last resort.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153699 91177308-0d34-0410-b5e6-96231b3b80d8
The CMP->CMN alias was matching for an immediate of zero when it
should only match for negative values.
rdar://11129224
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153689 91177308-0d34-0410-b5e6-96231b3b80d8
ARM recently gained DPair, DTriple, and DQuad register classes.
Update copyPhysReg() to handle copies in these register classes.
No test case, it is difficult to make the register allocator emit the
odd copies reliably. The missing DPair copy caused a failure on
partialsums in the nightly test suite.
<rdar://problem/11147997>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153686 91177308-0d34-0410-b5e6-96231b3b80d8
When an strd instruction doesn't get the registers it wants, it can be
expanded into two str instructions. Make sure the first str doesn't kill
the base register in the case where the base and data registers are
identical:
t2STRi12 %R0<kill>, %R0, 4, pred:14, pred:%noreg
t2STRi12 %R2<kill>, %R0, 8, pred:14, pred:%noreg
<rdar://problem/11101911>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153611 91177308-0d34-0410-b5e6-96231b3b80d8
When a number of sub-register VLRDS instructions are combined into a
VLDM, preserve any super-register implicit defs. This is required to
keep the register scavenger and machine code verifier happy.
Enable machine code verification after ARMLoadStoreOptimizer.
ARM/2012-01-26-CopyPropKills.ll was failing because of this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153610 91177308-0d34-0410-b5e6-96231b3b80d8
The arm_neon intrinsics can create virtual registers from the DPair
register class which allows both even-odd and odd-even D-register pairs.
This fixes PR12389.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153603 91177308-0d34-0410-b5e6-96231b3b80d8
Revert r153519: "ARMLoadStoreOptimizer invalidates register liveness."
These patches caused miscompilations in povray by turning off branch
folding's updating of live-in lists.
It turns out the the late scheduler depends on the live-in lists, even
if it doesn't need correct kill flags.
<rdar://problem/11139228>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153593 91177308-0d34-0410-b5e6-96231b3b80d8
This pass tries to update kill flags, but there are still many bugs.
Passes after the load/store optimizer don't need accurate liveness, so
don't even try.
<rdar://problem/11101911>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153519 91177308-0d34-0410-b5e6-96231b3b80d8
produces a 32-bit immediate which is consumed by the use. It tries to
fold the immediate by breaking it into two parts and fold them into the
immmediate fields of two uses. e.g
movw r2, #40885
movt r3, #46540
add r0, r0, r3
=>
add.w r0, r0, #3019898880
add.w r0, r0, #30146560
;
However, this transformation is incorrect if the user produces a flag. e.g.
movw r2, #40885
movt r3, #46540
adds r0, r0, r3
=>
add.w r0, r0, #3019898880
adds.w r0, r0, #30146560
Note the adds.w may not set the carry flag even if the original sequence
would.
rdar://11116189
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153484 91177308-0d34-0410-b5e6-96231b3b80d8
ARMBaseRegisterInfo::canRealignStack was checking for variable-sized objects
but not for stack adjustments around calls. Use hasReservedCallFrame() to
check for both. The hasBasePointer function was already correctly checking
both conditions, so the effect of this was that a base pointer would be used
without checking whether the base pointer register could be reserved. I don't
have a small testcase for this.
<rdar://problem/11075906>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153110 91177308-0d34-0410-b5e6-96231b3b80d8
ARMFrameLowering::hasReservedCallFrame is already checking for variable
sized objects, so there's no point in checking it twice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153109 91177308-0d34-0410-b5e6-96231b3b80d8