1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2025-01-17 06:33:21 +00:00

5733 lines
281 KiB
TableGen
Raw Normal View History

//====- X86InstrSSE.td - Describe the X86 Instruction Set --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SSE 1 & 2 Instructions Classes
//===----------------------------------------------------------------------===//
/// sse12_fp_scalar - SSE 1 & 2 scalar instructions class
multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
RegisterClass RC, X86MemOperand x86memop,
bit Is2Addr = 1> {
let isCommutable = 1 in {
def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, RC:$src2))]>;
}
def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))]>;
}
/// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class
multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr, RegisterClass RC,
string asm, string SSEVer, string FPSizeStr,
Operand memopr, ComplexPattern mem_cpat,
bit Is2Addr = 1> {
def rr_Int : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (!cast<Intrinsic>(
!strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr))
RC:$src1, RC:$src2))]>;
def rm_Int : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (!cast<Intrinsic>(!strconcat("int_x86_sse",
SSEVer, "_", OpcodeStr, FPSizeStr))
RC:$src1, mem_cpat:$src2))]>;
}
/// sse12_fp_packed - SSE 1 & 2 packed instructions class
multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
RegisterClass RC, ValueType vt,
X86MemOperand x86memop, PatFrag mem_frag,
Domain d, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], d>;
let mayLoad = 1 in
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))], d>;
}
/// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class
multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d,
string OpcodeStr, X86MemOperand x86memop,
list<dag> pat_rr, list<dag> pat_rm,
bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
pat_rr, d>;
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
pat_rm, d>;
}
/// sse12_fp_packed_int - SSE 1 & 2 packed instructions intrinsics class
multiclass sse12_fp_packed_int<bits<8> opc, string OpcodeStr, RegisterClass RC,
string asm, string SSEVer, string FPSizeStr,
X86MemOperand x86memop, PatFrag mem_frag,
Domain d, bit Is2Addr = 1> {
def rr_Int : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (!cast<Intrinsic>(
!strconcat("int_x86_", SSEVer, "_", OpcodeStr, FPSizeStr))
RC:$src1, RC:$src2))], d>;
def rm_Int : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1,x86memop:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (!cast<Intrinsic>(
!strconcat("int_x86_", SSEVer, "_", OpcodeStr, FPSizeStr))
RC:$src1, (mem_frag addr:$src2)))], d>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Move Instructions
//===----------------------------------------------------------------------===//
class sse12_move_rr<RegisterClass RC, ValueType vt, string asm> :
SI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, RC:$src2), asm,
[(set (vt VR128:$dst), (movl VR128:$src1, (scalar_to_vector RC:$src2)))]>;
// Loading from memory automatically zeroing upper bits.
class sse12_move_rm<RegisterClass RC, X86MemOperand x86memop,
PatFrag mem_pat, string OpcodeStr> :
SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (mem_pat addr:$src))]>;
// Move Instructions. Register-to-register movss/movsd is not used for FR32/64
// register copies because it's a partial register update; FsMOVAPSrr/FsMOVAPDrr
// is used instead. Register-to-register movss/movsd is not modeled as an
// INSERT_SUBREG because INSERT_SUBREG requires that the insert be implementable
// in terms of a copy, and just mentioned, we don't use movss/movsd for copies.
def VMOVSSrr : sse12_move_rr<FR32, v4f32,
"movss\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XS, VEX_4V;
def VMOVSDrr : sse12_move_rr<FR64, v2f64,
"movsd\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XD, VEX_4V;
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def VMOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS, VEX;
let AddedComplexity = 20 in
def VMOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD, VEX;
}
let Constraints = "$src1 = $dst" in {
def MOVSSrr : sse12_move_rr<FR32, v4f32,
"movss\t{$src2, $dst|$dst, $src2}">, XS;
def MOVSDrr : sse12_move_rr<FR64, v2f64,
"movsd\t{$src2, $dst|$dst, $src2}">, XD;
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def MOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS;
let AddedComplexity = 20 in
def MOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD;
}
let AddedComplexity = 15 in {
// Extract the low 32-bit value from one vector and insert it into another.
def : Pat<(v4f32 (movl VR128:$src1, VR128:$src2)),
(MOVSSrr (v4f32 VR128:$src1),
(EXTRACT_SUBREG (v4f32 VR128:$src2), sub_ss))>;
// Extract the low 64-bit value from one vector and insert it into another.
def : Pat<(v2f64 (movl VR128:$src1, VR128:$src2)),
(MOVSDrr (v2f64 VR128:$src1),
(EXTRACT_SUBREG (v2f64 VR128:$src2), sub_sd))>;
}
// Implicitly promote a 32-bit scalar to a vector.
def : Pat<(v4f32 (scalar_to_vector FR32:$src)),
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FR32:$src, sub_ss)>;
// Implicitly promote a 64-bit scalar to a vector.
def : Pat<(v2f64 (scalar_to_vector FR64:$src)),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FR64:$src, sub_sd)>;
// Implicitly promote a 32-bit scalar to a vector.
def : Pat<(v8f32 (scalar_to_vector FR32:$src)),
(INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), FR32:$src, sub_ss)>;
// Implicitly promote a 64-bit scalar to a vector.
def : Pat<(v4f64 (scalar_to_vector FR64:$src)),
(INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), FR64:$src, sub_sd)>;
let AddedComplexity = 20 in {
// MOVSSrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG.
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>;
def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
(SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>;
// MOVSDrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
(SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>;
def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
(SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>;
def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
(SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>;
def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
(SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>;
def : Pat<(v2f64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>;
}
// Store scalar value to memory.
def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src),
"movss\t{$src, $dst|$dst, $src}",
[(store FR32:$src, addr:$dst)]>;
def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(store FR64:$src, addr:$dst)]>;
def VMOVSSmr : SI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src),
"movss\t{$src, $dst|$dst, $src}",
[(store FR32:$src, addr:$dst)]>, XS, VEX;
def VMOVSDmr : SI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src),
"movsd\t{$src, $dst|$dst, $src}",
[(store FR64:$src, addr:$dst)]>, XD, VEX;
// Extract and store.
def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
addr:$dst),
(MOVSSmr addr:$dst,
(EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>;
def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
addr:$dst),
(MOVSDmr addr:$dst,
(EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>;
// Move Aligned/Unaligned floating point values
multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC,
X86MemOperand x86memop, PatFrag ld_frag,
string asm, Domain d,
bit IsReMaterializable = 1> {
let neverHasSideEffects = 1 in
def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], d>;
let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (ld_frag addr:$src))], d>;
}
defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle>, VEX;
defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
"movapd", SSEPackedDouble>, OpSize, VEX;
defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
"movups", SSEPackedSingle>, VEX;
defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
"movupd", SSEPackedDouble, 0>, OpSize, VEX;
defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32,
"movaps", SSEPackedSingle>, VEX;
defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64,
"movapd", SSEPackedDouble>, OpSize, VEX;
defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32,
"movups", SSEPackedSingle>, VEX;
defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64,
"movupd", SSEPackedDouble, 0>, OpSize, VEX;
defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
"movaps", SSEPackedSingle>, TB;
defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
"movapd", SSEPackedDouble>, TB, OpSize;
defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
"movups", SSEPackedSingle>, TB;
defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
"movupd", SSEPackedDouble, 0>, TB, OpSize;
def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)]>, VEX;
def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v2f64 VR128:$src), addr:$dst)]>, VEX;
def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)]>, VEX;
def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)]>, VEX;
def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v8f32 VR256:$src), addr:$dst)]>, VEX;
def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f64 VR256:$src), addr:$dst)]>, VEX;
def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v8f32 VR256:$src), addr:$dst)]>, VEX;
def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v4f64 VR256:$src), addr:$dst)]>, VEX;
def : Pat<(int_x86_avx_loadu_ps_256 addr:$src), (VMOVUPSYrm addr:$src)>;
def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src),
(VMOVUPSYmr addr:$dst, VR256:$src)>;
def : Pat<(int_x86_avx_loadu_pd_256 addr:$src), (VMOVUPDYrm addr:$src)>;
def : Pat<(int_x86_avx_storeu_pd_256 addr:$dst, VR256:$src),
(VMOVUPDYmr addr:$dst, VR256:$src)>;
def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(alignedstore (v4f32 VR128:$src), addr:$dst)]>;
def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(alignedstore (v2f64 VR128:$src), addr:$dst)]>;
def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)]>;
def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)]>;
// Intrinsic forms of MOVUPS/D load and store
def VMOVUPSmr_Int : VPSI<0x11, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>, VEX;
def VMOVUPDmr_Int : VPDI<0x11, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>, VEX;
def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movups\t{$src, $dst|$dst, $src}",
[(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>;
def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movupd\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>;
// Move Low/High packed floating point values
multiclass sse12_mov_hilo_packed<bits<8>opc, RegisterClass RC,
PatFrag mov_frag, string base_opc,
string asm_opr> {
def PSrm : PI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
!strconcat(base_opc, "s", asm_opr),
[(set RC:$dst,
(mov_frag RC:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))],
SSEPackedSingle>, TB;
def PDrm : PI<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, f64mem:$src2),
!strconcat(base_opc, "d", asm_opr),
[(set RC:$dst, (v2f64 (mov_frag RC:$src1,
(scalar_to_vector (loadf64 addr:$src2)))))],
SSEPackedDouble>, TB, OpSize;
}
let AddedComplexity = 20 in {
defm VMOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp",
"\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V;
defm VMOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp",
"\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V;
}
let Constraints = "$src1 = $dst", AddedComplexity = 20 in {
defm MOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp",
"\t{$src2, $dst|$dst, $src2}">;
defm MOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp",
"\t{$src2, $dst|$dst, $src2}">;
}
def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)]>, VEX;
def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>, VEX;
def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)]>;
def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(unpckh (bc_v2f64 (v4f32 VR128:$src)),
(undef)), (iPTR 0))), addr:$dst)]>,
VEX;
def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(v2f64 (unpckh VR128:$src, (undef))),
(iPTR 0))), addr:$dst)]>,
VEX;
def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhps\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(unpckh (bc_v2f64 (v4f32 VR128:$src)),
(undef)), (iPTR 0))), addr:$dst)]>;
def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
"movhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(v2f64 (unpckh VR128:$src, (undef))),
(iPTR 0))), addr:$dst)]>;
let AddedComplexity = 20 in {
def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v4f32 (movlhps VR128:$src1, VR128:$src2)))]>,
VEX_4V;
def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v4f32 (movhlps VR128:$src1, VR128:$src2)))]>,
VEX_4V;
}
let Constraints = "$src1 = $dst", AddedComplexity = 20 in {
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movlhps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (movlhps VR128:$src1, VR128:$src2)))]>;
def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
"movhlps\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (movhlps VR128:$src1, VR128:$src2)))]>;
}
def : Pat<(movlhps VR128:$src1, (bc_v4i32 (v2i64 (X86vzload addr:$src2)))),
(MOVHPSrm (v4i32 VR128:$src1), addr:$src2)>;
let AddedComplexity = 20 in {
def : Pat<(v4f32 (movddup VR128:$src, (undef))),
(MOVLHPSrr (v4f32 VR128:$src), (v4f32 VR128:$src))>;
def : Pat<(v2i64 (movddup VR128:$src, (undef))),
(MOVLHPSrr (v2i64 VR128:$src), (v2i64 VR128:$src))>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Conversion Instructions
//===----------------------------------------------------------------------===//
multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
string asm> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
[(set DstRC:$dst, (OpNode SrcRC:$src))]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
[(set DstRC:$dst, (OpNode (ld_frag addr:$src)))]>;
}
multiclass sse12_cvt_s_np<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
[]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
[]>;
}
multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
string asm, Domain d> {
def rr : PI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
[(set DstRC:$dst, (OpNode SrcRC:$src))], d>;
def rm : PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
[(set DstRC:$dst, (OpNode (ld_frag addr:$src)))], d>;
}
multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>;
}
defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}">, XS, VEX;
defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}">, XS, VEX,
VEX_W;
defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}">, XD, VEX;
defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}">, XD,
VEX, VEX_W;
// The assembler can recognize rr 64-bit instructions by seeing a rxx
// register, but the same isn't true when only using memory operands,
// provide other assembly "l" and "q" forms to address this explicitly
// where appropriate to do so.
defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss">, XS,
VEX_4V;
defm VCVTSI2SS64 : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}">, XS,
VEX_4V, VEX_W;
defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd">, XD,
VEX_4V;
defm VCVTSI2SDL : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}">, XD,
VEX_4V;
defm VCVTSI2SD64 : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}">, XD,
VEX_4V, VEX_W;
defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
"cvttss2si\t{$src, $dst|$dst, $src}">, XS;
defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
"cvttss2si{q}\t{$src, $dst|$dst, $src}">, XS, REX_W;
defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
"cvttsd2si\t{$src, $dst|$dst, $src}">, XD;
defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
"cvttsd2si{q}\t{$src, $dst|$dst, $src}">, XD, REX_W;
defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32,
"cvtsi2ss\t{$src, $dst|$dst, $src}">, XS;
defm CVTSI2SS64 : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64,
"cvtsi2ss{q}\t{$src, $dst|$dst, $src}">, XS, REX_W;
defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32,
"cvtsi2sd\t{$src, $dst|$dst, $src}">, XD;
defm CVTSI2SD64 : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64,
"cvtsi2sd{q}\t{$src, $dst|$dst, $src}">, XD, REX_W;
// Conversion Instructions Intrinsics - Match intrinsics which expect MM
// and/or XMM operand(s).
multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag,
string asm> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (Int SrcRC:$src))]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set DstRC:$dst, (Int (ld_frag addr:$src)))]>;
}
multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC,
RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop,
PatFrag ld_frag, string asm, bit Is2Addr = 1> {
def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))]>;
def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
(ins DstRC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))]>;
}
defm Int_VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
f32mem, load, "cvtss2si">, XS, VEX;
defm Int_VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64,
int_x86_sse_cvtss2si64, f32mem, load, "cvtss2si">,
XS, VEX, VEX_W;
defm Int_VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si,
f128mem, load, "cvtsd2si">, XD, VEX;
defm Int_VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64,
int_x86_sse2_cvtsd2si64, f128mem, load, "cvtsd2si">,
XD, VEX, VEX_W;
// FIXME: The asm matcher has a hack to ignore instructions with _Int and Int_
// Get rid of this hack or rename the intrinsics, there are several
// intructions that only match with the intrinsic form, why create duplicates
// to let them be recognized by the assembler?
defm VCVTSD2SI_alt : sse12_cvt_s_np<0x2D, FR64, GR32, f64mem,
"cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX;
defm VCVTSD2SI64 : sse12_cvt_s_np<0x2D, FR64, GR64, f64mem,
"cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX, VEX_W;
defm Int_CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
f32mem, load, "cvtss2si">, XS;
defm Int_CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
f32mem, load, "cvtss2si{q}">, XS, REX_W;
defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si,
f128mem, load, "cvtsd2si{l}">, XD;
defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64,
f128mem, load, "cvtsd2si{q}">, XD, REX_W;
defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss", 0>, XS, VEX_4V;
defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss", 0>, XS, VEX_4V,
VEX_W;
defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd", 0>, XD, VEX_4V;
defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd", 0>, XD,
VEX_4V, VEX_W;
let Constraints = "$src1 = $dst" in {
defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse_cvtsi2ss, i32mem, loadi32,
"cvtsi2ss">, XS;
defm Int_CVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse_cvtsi642ss, i64mem, loadi64,
"cvtsi2ss{q}">, XS, REX_W;
defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
int_x86_sse2_cvtsi2sd, i32mem, loadi32,
"cvtsi2sd">, XD;
defm Int_CVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
int_x86_sse2_cvtsi642sd, i64mem, loadi64,
"cvtsi2sd">, XD, REX_W;
}
/// SSE 1 Only
// Aliases for intrinsics
defm Int_VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
f32mem, load, "cvttss2si">, XS, VEX;
defm Int_VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse_cvttss2si64, f32mem, load,
"cvttss2si">, XS, VEX, VEX_W;
defm Int_VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
f128mem, load, "cvttsd2si">, XD, VEX;
defm Int_VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse2_cvttsd2si64, f128mem, load,
"cvttsd2si">, XD, VEX, VEX_W;
defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
f32mem, load, "cvttss2si">, XS;
defm Int_CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse_cvttss2si64, f32mem, load,
"cvttss2si{q}">, XS, REX_W;
defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
f128mem, load, "cvttsd2si">, XD;
defm Int_CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
int_x86_sse2_cvttsd2si64, f128mem, load,
"cvttsd2si{q}">, XD, REX_W;
let Pattern = []<dag> in {
defm VCVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load,
"cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS, VEX;
defm VCVTSS2SI64 : sse12_cvt_s<0x2D, FR32, GR64, undef, f32mem, load,
"cvtss2si\t{$src, $dst|$dst, $src}">, XS, VEX,
VEX_W;
defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, i128mem, load,
"cvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle>, TB, VEX;
defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, VR256, undef, i256mem, load,
"cvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle>, TB, VEX;
}
let Pattern = []<dag> in {
defm CVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load /*dummy*/,
"cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS;
defm CVTSS2SI64 : sse12_cvt_s<0x2D, FR32, GR64, undef, f32mem, load /*dummy*/,
"cvtss2si{q}\t{$src, $dst|$dst, $src}">, XS, REX_W;
defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, i128mem, load /*dummy*/,
"cvtdq2ps\t{$src, $dst|$dst, $src}",
SSEPackedSingle>, TB; /* PD SSE3 form is avaiable */
}
/// SSE 2 Only
// Convert scalar double to scalar single
def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst),
(ins FR64:$src1, FR64:$src2),
"cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
VEX_4V;
def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst),
(ins FR64:$src1, f64mem:$src2),
"vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, XD, Requires<[HasAVX, OptForSize]>, VEX_4V;
def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>,
Requires<[HasAVX]>;
def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround FR64:$src))]>;
def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
"cvtsd2ss\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround (loadf64 addr:$src)))]>, XD,
Requires<[HasSSE2, OptForSize]>;
defm Int_VCVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128,
int_x86_sse2_cvtsd2ss, f64mem, load, "cvtsd2ss", 0>,
XS, VEX_4V;
let Constraints = "$src1 = $dst" in
defm Int_CVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128,
int_x86_sse2_cvtsd2ss, f64mem, load, "cvtsd2ss">, XS;
// Convert scalar single to scalar double
// SSE2 instructions with XS prefix
def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst),
(ins FR32:$src1, FR32:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, XS, Requires<[HasAVX]>, VEX_4V;
def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst),
(ins FR32:$src1, f32mem:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, XS, VEX_4V, Requires<[HasAVX, OptForSize]>;
def : Pat<(f64 (fextend FR32:$src)), (VCVTSS2SDrr FR32:$src, FR32:$src)>,
Requires<[HasAVX]>;
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (fextend FR32:$src))]>, XS,
Requires<[HasSSE2]>;
def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
"cvtss2sd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (extloadf32 addr:$src))]>, XS,
Requires<[HasSSE2, OptForSize]>;
def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
VR128:$src2))]>, XS, VEX_4V,
Requires<[HasAVX]>;
def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f32mem:$src2),
"vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
(load addr:$src2)))]>, XS, VEX_4V,
Requires<[HasAVX]>;
let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix
def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
VR128:$src2))]>, XS,
Requires<[HasSSE2]>;
def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, f32mem:$src2),
"cvtss2sd\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
(load addr:$src2)))]>, XS,
Requires<[HasSSE2]>;
}
def : Pat<(extloadf32 addr:$src),
(CVTSS2SDrr (MOVSSrm addr:$src))>,
Requires<[HasSSE2, OptForSpeed]>;
// Convert doubleword to packed single/double fp
// SSE2 instructions without OpSize prefix
def Int_VCVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtdq2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>,
TB, VEX, Requires<[HasAVX]>;
def Int_VCVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vcvtdq2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps
(bitconvert (memopv2i64 addr:$src))))]>,
TB, VEX, Requires<[HasAVX]>;
def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"cvtdq2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps
(bitconvert (memopv2i64 addr:$src))))]>,
TB, Requires<[HasSSE2]>;
// FIXME: why the non-intrinsic version is described as SSE3?
// SSE2 instructions with XS prefix
def Int_VCVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>,
XS, VEX, Requires<[HasAVX]>;
def Int_VCVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd
(bitconvert (memopv2i64 addr:$src))))]>,
XS, VEX, Requires<[HasAVX]>;
def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>,
XS, Requires<[HasSSE2]>;
def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd
(bitconvert (memopv2i64 addr:$src))))]>,
XS, Requires<[HasSSE2]>;
// Convert packed single/double fp to doubleword
def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>;
def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}", []>;
def Int_VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>,
VEX;
def Int_VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst),
(ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq
(memop addr:$src)))]>, VEX;
def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>;
def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq
(memop addr:$src)))]>;
// SSE2 packed instructions with XD prefix
def Int_VCVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
XD, VEX, Requires<[HasAVX]>;
def Int_VCVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"vcvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq
(memop addr:$src)))]>,
XD, VEX, Requires<[HasAVX]>;
def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
XD, Requires<[HasSSE2]>;
def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq
(memop addr:$src)))]>,
XD, Requires<[HasSSE2]>;
// Convert with truncation packed single/double fp to doubleword
// SSE2 packed instructions with XS prefix
def VCVTTPS2DQrr : VSSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTTPS2DQrm : VSSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTTPS2DQYrr : VSSI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTTPS2DQYrm : VSSI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def CVTTPS2DQrr : SSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvttps2dq VR128:$src))]>;
def CVTTPS2DQrm : SSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvttps2dq (memop addr:$src)))]>;
def Int_VCVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(int_x86_sse2_cvttps2dq VR128:$src))]>,
XS, VEX, Requires<[HasAVX]>;
def Int_VCVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"vcvttps2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttps2dq
(memop addr:$src)))]>,
XS, VEX, Requires<[HasAVX]>;
def Int_VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>,
VEX;
def Int_VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst),
(ins f128mem:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq
(memop addr:$src)))]>, VEX;
def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>;
def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq
(memop addr:$src)))]>;
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTTPD2DQXrYr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvttpd2dq\t{$src, $dst|$dst, $src}", []>, VEX;
// XMM only
def VCVTTPD2DQXrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvttpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTTPD2DQXrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvttpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX;
// YMM only
def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvttpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"cvttpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L;
// Convert packed single to packed double
let Predicates = [HasAVX] in {
// SSE2 instructions without OpSize prefix
def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX;
}
def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB;
def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB;
def Int_VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>,
VEX, Requires<[HasAVX]>;
def Int_VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"vcvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd
(load addr:$src)))]>,
VEX, Requires<[HasAVX]>;
def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
"cvtps2pd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd
(load addr:$src)))]>,
TB, Requires<[HasSSE2]>;
// Convert packed double to packed single
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPD2PSXrYr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}", []>, VEX;
// XMM only
def VCVTPD2PSXrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2psx\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPD2PSXrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2psx\t{$src, $dst|$dst, $src}", []>, VEX;
// YMM only
def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"cvtpd2psy\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"cvtpd2psy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L;
def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}", []>;
def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}", []>;
def Int_VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>;
def Int_VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst),
(ins f128mem:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps
(memop addr:$src)))]>;
def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>;
def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2ps\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps
(memop addr:$src)))]>;
// AVX 256-bit register conversion intrinsics
// FIXME: Migrate SSE conversion intrinsics matching to use patterns as below
// whenever possible to avoid declaring two versions of each one.
def : Pat<(int_x86_avx_cvtdq2_ps_256 VR256:$src),
(VCVTDQ2PSYrr VR256:$src)>;
def : Pat<(int_x86_avx_cvtdq2_ps_256 (memopv8i32 addr:$src)),
(VCVTDQ2PSYrm addr:$src)>;
def : Pat<(int_x86_avx_cvt_pd2_ps_256 VR256:$src),
(VCVTPD2PSYrr VR256:$src)>;
def : Pat<(int_x86_avx_cvt_pd2_ps_256 (memopv4f64 addr:$src)),
(VCVTPD2PSYrm addr:$src)>;
def : Pat<(int_x86_avx_cvt_ps2dq_256 VR256:$src),
(VCVTPS2DQYrr VR256:$src)>;
def : Pat<(int_x86_avx_cvt_ps2dq_256 (memopv8f32 addr:$src)),
(VCVTPS2DQYrm addr:$src)>;
def : Pat<(int_x86_avx_cvt_ps2_pd_256 VR128:$src),
(VCVTPS2PDYrr VR128:$src)>;
def : Pat<(int_x86_avx_cvt_ps2_pd_256 (memopv4f32 addr:$src)),
(VCVTPS2PDYrm addr:$src)>;
def : Pat<(int_x86_avx_cvtt_pd2dq_256 VR256:$src),
(VCVTTPD2DQYrr VR256:$src)>;
def : Pat<(int_x86_avx_cvtt_pd2dq_256 (memopv4f64 addr:$src)),
(VCVTTPD2DQYrm addr:$src)>;
def : Pat<(int_x86_avx_cvtt_ps2dq_256 VR256:$src),
(VCVTTPS2DQYrr VR256:$src)>;
def : Pat<(int_x86_avx_cvtt_ps2dq_256 (memopv8f32 addr:$src)),
(VCVTTPS2DQYrm addr:$src)>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Compare Instructions
//===----------------------------------------------------------------------===//
// sse12_cmp_scalar - sse 1 & 2 compare scalar instructions
multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
string asm, string asm_alt> {
let isAsmParserOnly = 1 in {
def rr : SIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc),
asm, []>;
let mayLoad = 1 in
def rm : SIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src, SSECC:$cc),
asm, []>;
}
// Accept explicit immediate argument form instead of comparison code.
def rr_alt : SIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2),
asm_alt, []>;
let mayLoad = 1 in
def rm_alt : SIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src, i8imm:$src2),
asm_alt, []>;
}
let neverHasSideEffects = 1 in {
defm VCMPSS : sse12_cmp_scalar<FR32, f32mem,
"cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}",
"cmpss\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}">,
XS, VEX_4V;
defm VCMPSD : sse12_cmp_scalar<FR64, f64mem,
"cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}",
"cmpsd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}">,
XD, VEX_4V;
}
let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in {
defm CMPSS : sse12_cmp_scalar<FR32, f32mem,
"cmp${cc}ss\t{$src, $dst|$dst, $src}",
"cmpss\t{$src2, $src, $dst|$dst, $src, $src2}">, XS;
defm CMPSD : sse12_cmp_scalar<FR64, f64mem,
"cmp${cc}sd\t{$src, $dst|$dst, $src}",
"cmpsd\t{$src2, $src, $dst|$dst, $src, $src2}">, XD;
}
multiclass sse12_cmp_scalar_int<RegisterClass RC, X86MemOperand x86memop,
Intrinsic Int, string asm> {
def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src, SSECC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
VR128:$src, imm:$cc))]>;
def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f32mem:$src, SSECC:$cc), asm,
[(set VR128:$dst, (Int VR128:$src1,
(load addr:$src), imm:$cc))]>;
}
// Aliases to match intrinsics which expect XMM operand(s).
defm Int_VCMPSS : sse12_cmp_scalar_int<VR128, f32mem, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}">,
XS, VEX_4V;
defm Int_VCMPSD : sse12_cmp_scalar_int<VR128, f64mem, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}">,
XD, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm Int_CMPSS : sse12_cmp_scalar_int<VR128, f32mem, int_x86_sse_cmp_ss,
"cmp${cc}ss\t{$src, $dst|$dst, $src}">, XS;
defm Int_CMPSD : sse12_cmp_scalar_int<VR128, f64mem, int_x86_sse2_cmp_sd,
"cmp${cc}sd\t{$src, $dst|$dst, $src}">, XD;
}
// sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS
multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode,
ValueType vt, X86MemOperand x86memop,
PatFrag ld_frag, string OpcodeStr, Domain d> {
def rr: PI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))], d>;
def rm: PI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode (vt RC:$src1),
(ld_frag addr:$src2)))], d>;
}
let Defs = [EFLAGS] in {
defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
"ucomiss", SSEPackedSingle>, VEX;
defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
"ucomisd", SSEPackedDouble>, OpSize, VEX;
let Pattern = []<dag> in {
defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load,
"comiss", SSEPackedSingle>, VEX;
defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load,
"comisd", SSEPackedDouble>, OpSize, VEX;
}
defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
load, "ucomiss", SSEPackedSingle>, VEX;
defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
load, "ucomisd", SSEPackedDouble>, OpSize, VEX;
defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem,
load, "comiss", SSEPackedSingle>, VEX;
defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem,
load, "comisd", SSEPackedDouble>, OpSize, VEX;
defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
"ucomiss", SSEPackedSingle>, TB;
defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
"ucomisd", SSEPackedDouble>, TB, OpSize;
let Pattern = []<dag> in {
defm COMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load,
"comiss", SSEPackedSingle>, TB;
defm COMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load,
"comisd", SSEPackedDouble>, TB, OpSize;
}
defm Int_UCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
load, "ucomiss", SSEPackedSingle>, TB;
defm Int_UCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
load, "ucomisd", SSEPackedDouble>, TB, OpSize;
defm Int_COMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load,
"comiss", SSEPackedSingle>, TB;
defm Int_COMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load,
"comisd", SSEPackedDouble>, TB, OpSize;
} // Defs = [EFLAGS]
// sse12_cmp_packed - sse 1 & 2 compared packed instructions
multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
Intrinsic Int, string asm, string asm_alt,
Domain d> {
let isAsmParserOnly = 1 in {
def rri : PIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm,
[(set RC:$dst, (Int RC:$src1, RC:$src, imm:$cc))], d>;
def rmi : PIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, f128mem:$src, SSECC:$cc), asm,
[(set RC:$dst, (Int RC:$src1, (memop addr:$src), imm:$cc))], d>;
}
// Accept explicit immediate argument form instead of comparison code.
def rri_alt : PIi8<0xC2, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2),
asm_alt, [], d>;
def rmi_alt : PIi8<0xC2, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, f128mem:$src, i8imm:$src2),
asm_alt, [], d>;
}
defm VCMPPS : sse12_cmp_packed<VR128, f128mem, int_x86_sse_cmp_ps,
"cmp${cc}ps\t{$src, $src1, $dst|$dst, $src1, $src}",
"cmpps\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}",
SSEPackedSingle>, VEX_4V;
defm VCMPPD : sse12_cmp_packed<VR128, f128mem, int_x86_sse2_cmp_pd,
"cmp${cc}pd\t{$src, $src1, $dst|$dst, $src1, $src}",
"cmppd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}",
SSEPackedDouble>, OpSize, VEX_4V;
defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, int_x86_avx_cmp_ps_256,
"cmp${cc}ps\t{$src, $src1, $dst|$dst, $src1, $src}",
"cmpps\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}",
SSEPackedSingle>, VEX_4V;
defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, int_x86_avx_cmp_pd_256,
"cmp${cc}pd\t{$src, $src1, $dst|$dst, $src1, $src}",
"cmppd\t{$src2, $src, $src1, $dst|$dst, $src1, $src, $src2}",
SSEPackedDouble>, OpSize, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm CMPPS : sse12_cmp_packed<VR128, f128mem, int_x86_sse_cmp_ps,
"cmp${cc}ps\t{$src, $dst|$dst, $src}",
"cmpps\t{$src2, $src, $dst|$dst, $src, $src2}",
SSEPackedSingle>, TB;
defm CMPPD : sse12_cmp_packed<VR128, f128mem, int_x86_sse2_cmp_pd,
"cmp${cc}pd\t{$src, $dst|$dst, $src}",
"cmppd\t{$src2, $src, $dst|$dst, $src, $src2}",
SSEPackedDouble>, TB, OpSize;
}
def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)),
(CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)),
(CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Shuffle Instructions
//===----------------------------------------------------------------------===//
/// sse12_shuffle - sse 1 & 2 shuffle instructions
multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop,
ValueType vt, string asm, PatFrag mem_frag,
Domain d, bit IsConvertibleToThreeAddress = 0> {
def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, f128mem:$src2, i8imm:$src3), asm,
[(set RC:$dst, (vt (shufp:$src3
RC:$src1, (mem_frag addr:$src2))))], d>;
let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in
def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, i8imm:$src3), asm,
[(set RC:$dst,
(vt (shufp:$src3 RC:$src1, RC:$src2)))], d>;
}
defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
"shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
memopv4f32, SSEPackedSingle>, TB, VEX_4V;
defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32,
"shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
memopv8f32, SSEPackedSingle>, TB, VEX_4V;
defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
"shufpd\t{$src3, $src2, $src1, $dst|$dst, $src2, $src2, $src3}",
memopv2f64, SSEPackedDouble>, TB, OpSize, VEX_4V;
defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64,
"shufpd\t{$src3, $src2, $src1, $dst|$dst, $src2, $src2, $src3}",
memopv4f64, SSEPackedDouble>, TB, OpSize, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
"shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
memopv4f32, SSEPackedSingle, 1 /* cvt to pshufd */>,
TB;
defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
"shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
memopv2f64, SSEPackedDouble>, TB, OpSize;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Unpack Instructions
//===----------------------------------------------------------------------===//
/// sse12_unpack_interleave - sse 1 & 2 unpack and interleave
multiclass sse12_unpack_interleave<bits<8> opc, PatFrag OpNode, ValueType vt,
PatFrag mem_frag, RegisterClass RC,
X86MemOperand x86memop, string asm,
Domain d> {
def rr : PI<opc, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
asm, [(set RC:$dst,
(vt (OpNode RC:$src1, RC:$src2)))], d>;
def rm : PI<opc, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
asm, [(set RC:$dst,
(vt (OpNode RC:$src1,
(mem_frag addr:$src2))))], d>;
}
let AddedComplexity = 10 in {
defm VUNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32,
VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, VEX_4V;
defm VUNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64,
VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, OpSize, VEX_4V;
defm VUNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32,
VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, VEX_4V;
defm VUNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64,
VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, OpSize, VEX_4V;
defm VUNPCKHPSY: sse12_unpack_interleave<0x15, unpckh, v8f32, memopv8f32,
VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, VEX_4V;
defm VUNPCKHPDY: sse12_unpack_interleave<0x15, unpckh, v4f64, memopv4f64,
VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, OpSize, VEX_4V;
defm VUNPCKLPSY: sse12_unpack_interleave<0x14, unpckl, v8f32, memopv8f32,
VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedSingle>, VEX_4V;
defm VUNPCKLPDY: sse12_unpack_interleave<0x14, unpckl, v4f64, memopv4f64,
VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
SSEPackedDouble>, OpSize, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm UNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32,
VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}",
SSEPackedSingle>, TB;
defm UNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64,
VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}",
SSEPackedDouble>, TB, OpSize;
defm UNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32,
VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}",
SSEPackedSingle>, TB;
defm UNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64,
VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}",
SSEPackedDouble>, TB, OpSize;
} // Constraints = "$src1 = $dst"
} // AddedComplexity
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Extract Floating-Point Sign mask
//===----------------------------------------------------------------------===//
/// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave
multiclass sse12_extr_sign_mask<RegisterClass RC, Intrinsic Int, string asm,
Domain d> {
def rr32 : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set GR32:$dst, (Int RC:$src))], d>;
def rr64 : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins RC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], d>, REX_W;
}
// Mask creation
defm MOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, "movmskps",
SSEPackedSingle>, TB;
defm MOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, "movmskpd",
SSEPackedDouble>, TB, OpSize;
defm VMOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps,
"movmskps", SSEPackedSingle>, VEX;
defm VMOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd,
"movmskpd", SSEPackedDouble>, OpSize,
VEX;
defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_ps_256,
"movmskps", SSEPackedSingle>, VEX;
defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_pd_256,
"movmskpd", SSEPackedDouble>, OpSize,
VEX;
// Assembler Only
def VMOVMSKPSr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX;
def VMOVMSKPDr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize,
VEX;
def VMOVMSKPSYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src),
"movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX;
def VMOVMSKPDYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src),
"movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize,
VEX;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Misc aliasing of packed SSE 1 & 2 instructions
//===----------------------------------------------------------------------===//
// Aliases of packed SSE1 & SSE2 instructions for scalar use. These all have
// names that start with 'Fs'.
// Alias instructions that map fld0 to pxor for sse.
let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1,
canFoldAsLoad = 1 in {
// FIXME: Set encoding to pseudo!
def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "",
[(set FR32:$dst, fp32imm0)]>,
Requires<[HasSSE1]>, TB, OpSize;
def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "",
[(set FR64:$dst, fpimm0)]>,
Requires<[HasSSE2]>, TB, OpSize;
def VFsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "",
[(set FR32:$dst, fp32imm0)]>,
Requires<[HasAVX]>, TB, OpSize, VEX_4V;
def VFsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "",
[(set FR64:$dst, fpimm0)]>,
Requires<[HasAVX]>, TB, OpSize, VEX_4V;
}
// Alias instruction to do FR32 or FR64 reg-to-reg copy using movaps. Upper
// bits are disregarded.
let neverHasSideEffects = 1 in {
def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
"movaps\t{$src, $dst|$dst, $src}", []>;
def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
"movapd\t{$src, $dst|$dst, $src}", []>;
}
// Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper
// bits are disregarded.
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
"movaps\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (alignedloadfsf32 addr:$src))]>;
def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
"movapd\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (alignedloadfsf64 addr:$src))]>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Logical Instructions
//===----------------------------------------------------------------------===//
/// sse12_fp_alias_pack_logical - SSE 1 & 2 aliased packed FP logical ops
///
multiclass sse12_fp_alias_pack_logical<bits<8> opc, string OpcodeStr,
SDNode OpNode> {
defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
FR32, f32, f128mem, memopfsf32, SSEPackedSingle, 0>, VEX_4V;
defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
FR64, f64, f128mem, memopfsf64, SSEPackedDouble, 0>, OpSize, VEX_4V;
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, FR32,
f32, f128mem, memopfsf32, SSEPackedSingle>, TB;
defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, FR64,
f64, f128mem, memopfsf64, SSEPackedDouble>, TB, OpSize;
}
}
// Alias bitwise logical operations using SSE logical ops on packed FP values.
let mayLoad = 0 in {
defm FsAND : sse12_fp_alias_pack_logical<0x54, "and", X86fand>;
defm FsOR : sse12_fp_alias_pack_logical<0x56, "or", X86for>;
defm FsXOR : sse12_fp_alias_pack_logical<0x57, "xor", X86fxor>;
}
let neverHasSideEffects = 1, Pattern = []<dag>, isCommutable = 0 in
defm FsANDN : sse12_fp_alias_pack_logical<0x55, "andn", undef>;
/// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops
///
multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
SDNode OpNode, int HasPat = 0,
list<list<dag>> Pattern = []> {
let Pattern = []<dag> in {
defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f128mem,
!if(HasPat, Pattern[0], // rr
[(set VR128:$dst, (v2i64 (OpNode VR128:$src1,
VR128:$src2)))]),
!if(HasPat, Pattern[2], // rm
[(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
(memopv2i64 addr:$src2)))]), 0>,
VEX_4V;
defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f128mem,
!if(HasPat, Pattern[1], // rr
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64
VR128:$src2))))]),
!if(HasPat, Pattern[3], // rm
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(memopv2i64 addr:$src2)))]), 0>,
OpSize, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f128mem,
!if(HasPat, Pattern[0], // rr
[(set VR128:$dst, (v2i64 (OpNode VR128:$src1,
VR128:$src2)))]),
!if(HasPat, Pattern[2], // rm
[(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
(memopv2i64 addr:$src2)))])>, TB;
defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f128mem,
!if(HasPat, Pattern[1], // rr
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64
VR128:$src2))))]),
!if(HasPat, Pattern[3], // rm
[(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
(memopv2i64 addr:$src2)))])>,
TB, OpSize;
}
}
/// sse12_fp_packed_logical_y - AVX 256-bit SSE 1 & 2 logical ops forms
///
multiclass sse12_fp_packed_logical_y<bits<8> opc, string OpcodeStr> {
defm PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle,
!strconcat(OpcodeStr, "ps"), f256mem, [], [], 0>, VEX_4V;
defm PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble,
!strconcat(OpcodeStr, "pd"), f256mem, [], [], 0>, OpSize, VEX_4V;
}
// AVX 256-bit packed logical ops forms
defm VAND : sse12_fp_packed_logical_y<0x54, "and">;
defm VOR : sse12_fp_packed_logical_y<0x56, "or">;
defm VXOR : sse12_fp_packed_logical_y<0x57, "xor">;
let isCommutable = 0 in
defm VANDN : sse12_fp_packed_logical_y<0x55, "andn">;
defm AND : sse12_fp_packed_logical<0x54, "and", and>;
defm OR : sse12_fp_packed_logical<0x56, "or", or>;
defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>;
let isCommutable = 0 in
defm ANDN : sse12_fp_packed_logical<0x55, "andn", undef /* dummy */, 1, [
// single r+r
[(set VR128:$dst, (X86pandn VR128:$src1, VR128:$src2))],
// double r+r
[],
// single r+m
[(set VR128:$dst, (X86pandn VR128:$src1, (memopv2i64 addr:$src2)))],
// double r+m
[]]>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Arithmetic Instructions
//===----------------------------------------------------------------------===//
/// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and
/// vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a scalar)
/// and leaves the top elements unmodified (therefore these cannot be commuted).
///
/// These three forms can each be reg+reg or reg+mem.
///
/// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those
/// classes below
multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
bit Is2Addr = 1> {
defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
OpNode, FR32, f32mem, Is2Addr>, XS;
defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
OpNode, FR64, f64mem, Is2Addr>, XD;
}
multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
bit Is2Addr = 1> {
let mayLoad = 0 in {
defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
v4f32, f128mem, memopv4f32, SSEPackedSingle, Is2Addr>, TB;
defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
v2f64, f128mem, memopv2f64, SSEPackedDouble, Is2Addr>, TB, OpSize;
}
}
multiclass basic_sse12_fp_binop_p_y<bits<8> opc, string OpcodeStr,
SDNode OpNode> {
let mayLoad = 0 in {
defm PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR256,
v8f32, f256mem, memopv8f32, SSEPackedSingle, 0>, TB;
defm PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR256,
v4f64, f256mem, memopv4f64, SSEPackedDouble, 0>, TB, OpSize;
}
}
multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr,
bit Is2Addr = 1> {
defm SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32, Is2Addr>, XS;
defm SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64, Is2Addr>, XD;
}
multiclass basic_sse12_fp_binop_p_int<bits<8> opc, string OpcodeStr,
bit Is2Addr = 1> {
defm PS : sse12_fp_packed_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "ps"), "sse", "_ps", f128mem, memopv4f32,
SSEPackedSingle, Is2Addr>, TB;
defm PD : sse12_fp_packed_int<opc, OpcodeStr, VR128,
!strconcat(OpcodeStr, "pd"), "sse2", "_pd", f128mem, memopv2f64,
SSEPackedDouble, Is2Addr>, TB, OpSize;
}
multiclass basic_sse12_fp_binop_p_y_int<bits<8> opc, string OpcodeStr> {
defm PSY : sse12_fp_packed_int<opc, OpcodeStr, VR256,
!strconcat(OpcodeStr, "ps"), "avx", "_ps_256", f256mem, memopv8f32,
SSEPackedSingle, 0>, TB;
defm PDY : sse12_fp_packed_int<opc, OpcodeStr, VR256,
!strconcat(OpcodeStr, "pd"), "avx", "_pd_256", f256mem, memopv4f64,
SSEPackedDouble, 0>, TB, OpSize;
}
// Binary Arithmetic instructions
defm VADD : basic_sse12_fp_binop_s<0x58, "add", fadd, 0>,
basic_sse12_fp_binop_s_int<0x58, "add", 0>,
basic_sse12_fp_binop_p<0x58, "add", fadd, 0>,
basic_sse12_fp_binop_p_y<0x58, "add", fadd>, VEX_4V;
defm VMUL : basic_sse12_fp_binop_s<0x59, "mul", fmul, 0>,
basic_sse12_fp_binop_s_int<0x59, "mul", 0>,
basic_sse12_fp_binop_p<0x59, "mul", fmul, 0>,
basic_sse12_fp_binop_p_y<0x59, "mul", fmul>, VEX_4V;
let isCommutable = 0 in {
defm VSUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub, 0>,
basic_sse12_fp_binop_s_int<0x5C, "sub", 0>,
basic_sse12_fp_binop_p<0x5C, "sub", fsub, 0>,
basic_sse12_fp_binop_p_y<0x5C, "sub", fsub>, VEX_4V;
defm VDIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv, 0>,
basic_sse12_fp_binop_s_int<0x5E, "div", 0>,
basic_sse12_fp_binop_p<0x5E, "div", fdiv, 0>,
basic_sse12_fp_binop_p_y<0x5E, "div", fdiv>, VEX_4V;
defm VMAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax, 0>,
basic_sse12_fp_binop_s_int<0x5F, "max", 0>,
basic_sse12_fp_binop_p<0x5F, "max", X86fmax, 0>,
basic_sse12_fp_binop_p_int<0x5F, "max", 0>,
basic_sse12_fp_binop_p_y<0x5F, "max", X86fmax>,
basic_sse12_fp_binop_p_y_int<0x5F, "max">, VEX_4V;
defm VMIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin, 0>,
basic_sse12_fp_binop_s_int<0x5D, "min", 0>,
basic_sse12_fp_binop_p<0x5D, "min", X86fmin, 0>,
basic_sse12_fp_binop_p_int<0x5D, "min", 0>,
basic_sse12_fp_binop_p_y_int<0x5D, "min">,
basic_sse12_fp_binop_p_y<0x5D, "min", X86fmin>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm ADD : basic_sse12_fp_binop_s<0x58, "add", fadd>,
basic_sse12_fp_binop_p<0x58, "add", fadd>,
basic_sse12_fp_binop_s_int<0x58, "add">;
defm MUL : basic_sse12_fp_binop_s<0x59, "mul", fmul>,
basic_sse12_fp_binop_p<0x59, "mul", fmul>,
basic_sse12_fp_binop_s_int<0x59, "mul">;
let isCommutable = 0 in {
defm SUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub>,
basic_sse12_fp_binop_p<0x5C, "sub", fsub>,
basic_sse12_fp_binop_s_int<0x5C, "sub">;
defm DIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv>,
basic_sse12_fp_binop_p<0x5E, "div", fdiv>,
basic_sse12_fp_binop_s_int<0x5E, "div">;
defm MAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax>,
basic_sse12_fp_binop_p<0x5F, "max", X86fmax>,
basic_sse12_fp_binop_s_int<0x5F, "max">,
basic_sse12_fp_binop_p_int<0x5F, "max">;
defm MIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin>,
basic_sse12_fp_binop_p<0x5D, "min", X86fmin>,
basic_sse12_fp_binop_s_int<0x5D, "min">,
basic_sse12_fp_binop_p_int<0x5D, "min">;
}
}
/// Unop Arithmetic
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation. This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a
/// scalar) and leaves the top elements undefined.
///
/// And, we have a special variant form for a full-vector intrinsic form.
/// sse1_fp_unop_s - SSE1 unops in scalar form.
multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F32Int> {
def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode FR32:$src))]>;
// For scalar unary operations, fold a load into the operation
// only in OptForSize mode. It eliminates an instruction, but it also
// eliminates a whole-register clobber (the load), so it introduces a
// partial register update condition.
def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode (load addr:$src)))]>, XS,
Requires<[HasSSE1, OptForSize]>;
def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F32Int VR128:$src))]>;
def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F32Int sse_load_f32:$src))]>;
}
/// sse1_fp_unop_s_avx - AVX SSE1 unops in scalar form.
multiclass sse1_fp_unop_s_avx<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F32Int> {
def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f32mem:$src2),
!strconcat(OpcodeStr,
"ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, XS, Requires<[HasAVX, OptForSize]>;
def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr,
"ss\t{$src, $dst, $dst|$dst, $dst, $src}"),
[(set VR128:$dst, (F32Int VR128:$src))]>;
def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src),
!strconcat(OpcodeStr,
"ss\t{$src, $dst, $dst|$dst, $dst, $src}"),
[(set VR128:$dst, (F32Int sse_load_f32:$src))]>;
}
/// sse1_fp_unop_p - SSE1 unops in packed form.
multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode> {
def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>;
def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>;
}
/// sse1_fp_unop_p_y - AVX 256-bit SSE1 unops in packed form.
multiclass sse1_fp_unop_p_y<bits<8> opc, string OpcodeStr, SDNode OpNode> {
def PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v8f32 (OpNode VR256:$src)))]>;
def PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (OpNode (memopv8f32 addr:$src)))]>;
}
/// sse1_fp_unop_p_int - SSE1 intrinsics unops in packed forms.
multiclass sse1_fp_unop_p_int<bits<8> opc, string OpcodeStr,
Intrinsic V4F32Int> {
def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int VR128:$src))]>;
def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))]>;
}
/// sse1_fp_unop_p_y_int - AVX 256-bit intrinsics unops in packed forms.
multiclass sse1_fp_unop_p_y_int<bits<8> opc, string OpcodeStr,
Intrinsic V4F32Int> {
def PSYr_Int : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (V4F32Int VR256:$src))]>;
def PSYm_Int : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (V4F32Int (memopv8f32 addr:$src)))]>;
}
/// sse2_fp_unop_s - SSE2 unops in scalar form.
multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F64Int> {
def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode FR64:$src))]>;
// See the comments in sse1_fp_unop_s for why this is OptForSize.
def SDm : I<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode (load addr:$src)))]>, XD,
Requires<[HasSSE2, OptForSize]>;
def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F64Int VR128:$src))]>;
def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (F64Int sse_load_f64:$src))]>;
}
/// sse2_fp_unop_s_avx - AVX SSE2 unops in scalar form.
multiclass sse2_fp_unop_s_avx<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F64Int> {
def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
!strconcat(OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
def SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst),
(ins FR64:$src1, f64mem:$src2),
!strconcat(OpcodeStr,
"sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst, $dst|$dst, $dst, $src}"),
[(set VR128:$dst, (F64Int VR128:$src))]>;
def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst, $dst|$dst, $dst, $src}"),
[(set VR128:$dst, (F64Int sse_load_f64:$src))]>;
}
/// sse2_fp_unop_p - SSE2 unops in vector forms.
multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr,
SDNode OpNode> {
def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>;
def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))]>;
}
/// sse2_fp_unop_p_y - AVX SSE2 256-bit unops in vector forms.
multiclass sse2_fp_unop_p_y<bits<8> opc, string OpcodeStr, SDNode OpNode> {
def PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (v4f64 (OpNode VR256:$src)))]>;
def PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (OpNode (memopv4f64 addr:$src)))]>;
}
/// sse2_fp_unop_p_int - SSE2 intrinsic unops in vector forms.
multiclass sse2_fp_unop_p_int<bits<8> opc, string OpcodeStr,
Intrinsic V2F64Int> {
def PDr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V2F64Int VR128:$src))]>;
def PDm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (V2F64Int (memopv2f64 addr:$src)))]>;
}
/// sse2_fp_unop_p_y_int - AVX 256-bit intrinsic unops in vector forms.
multiclass sse2_fp_unop_p_y_int<bits<8> opc, string OpcodeStr,
Intrinsic V2F64Int> {
def PDYr_Int : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (V2F64Int VR256:$src))]>;
def PDYm_Int : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
[(set VR256:$dst, (V2F64Int (memopv4f64 addr:$src)))]>;
}
let Predicates = [HasAVX] in {
// Square root.
defm VSQRT : sse1_fp_unop_s_avx<0x51, "vsqrt", fsqrt, int_x86_sse_sqrt_ss>,
sse2_fp_unop_s_avx<0x51, "vsqrt", fsqrt, int_x86_sse2_sqrt_sd>,
VEX_4V;
defm VSQRT : sse1_fp_unop_p<0x51, "vsqrt", fsqrt>,
sse2_fp_unop_p<0x51, "vsqrt", fsqrt>,
sse1_fp_unop_p_y<0x51, "vsqrt", fsqrt>,
sse2_fp_unop_p_y<0x51, "vsqrt", fsqrt>,
sse1_fp_unop_p_int<0x51, "vsqrt", int_x86_sse_sqrt_ps>,
sse2_fp_unop_p_int<0x51, "vsqrt", int_x86_sse2_sqrt_pd>,
sse1_fp_unop_p_y_int<0x51, "vsqrt", int_x86_avx_sqrt_ps_256>,
sse2_fp_unop_p_y_int<0x51, "vsqrt", int_x86_avx_sqrt_pd_256>,
VEX;
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
defm VRSQRT : sse1_fp_unop_s_avx<0x52, "vrsqrt", X86frsqrt,
int_x86_sse_rsqrt_ss>, VEX_4V;
defm VRSQRT : sse1_fp_unop_p<0x52, "vrsqrt", X86frsqrt>,
sse1_fp_unop_p_y<0x52, "vrsqrt", X86frsqrt>,
sse1_fp_unop_p_y_int<0x52, "vrsqrt", int_x86_avx_rsqrt_ps_256>,
sse1_fp_unop_p_int<0x52, "vrsqrt", int_x86_sse_rsqrt_ps>, VEX;
defm VRCP : sse1_fp_unop_s_avx<0x53, "vrcp", X86frcp, int_x86_sse_rcp_ss>,
VEX_4V;
defm VRCP : sse1_fp_unop_p<0x53, "vrcp", X86frcp>,
sse1_fp_unop_p_y<0x53, "vrcp", X86frcp>,
sse1_fp_unop_p_y_int<0x53, "vrcp", int_x86_avx_rcp_ps_256>,
sse1_fp_unop_p_int<0x53, "vrcp", int_x86_sse_rcp_ps>, VEX;
}
// Square root.
defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss>,
sse1_fp_unop_p<0x51, "sqrt", fsqrt>,
sse1_fp_unop_p_int<0x51, "sqrt", int_x86_sse_sqrt_ps>,
sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd>,
sse2_fp_unop_p<0x51, "sqrt", fsqrt>,
sse2_fp_unop_p_int<0x51, "sqrt", int_x86_sse2_sqrt_pd>;
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss>,
sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt>,
sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps>;
defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss>,
sse1_fp_unop_p<0x53, "rcp", X86frcp>,
sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps>;
// There is no f64 version of the reciprocal approximation instructions.
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Non-temporal stores
//===----------------------------------------------------------------------===//
let AddedComplexity = 400 in { // Prefer non-temporal versions
def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src),
addr:$dst)]>, VEX;
def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2f64 VR128:$src),
addr:$dst)]>, VEX;
def VMOVNTDQ_64mr : VPDI<0xE7, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2f64 VR128:$src),
addr:$dst)]>, VEX;
let ExeDomain = SSEPackedInt in
def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src),
addr:$dst)]>, VEX;
def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst),
(VMOVNTDQmr addr:$dst, VR128:$src)>, Requires<[HasAVX]>;
def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v8f32 VR256:$src),
addr:$dst)]>, VEX;
def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f64 VR256:$src),
addr:$dst)]>, VEX;
def VMOVNTDQY_64mr : VPDI<0xE7, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f64 VR256:$src),
addr:$dst)]>, VEX;
let ExeDomain = SSEPackedInt in
def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v8f32 VR256:$src),
addr:$dst)]>, VEX;
}
def : Pat<(int_x86_avx_movnt_dq_256 addr:$dst, VR256:$src),
(VMOVNTDQYmr addr:$dst, VR256:$src)>;
def : Pat<(int_x86_avx_movnt_pd_256 addr:$dst, VR256:$src),
(VMOVNTPDYmr addr:$dst, VR256:$src)>;
def : Pat<(int_x86_avx_movnt_ps_256 addr:$dst, VR256:$src),
(VMOVNTPSYmr addr:$dst, VR256:$src)>;
let AddedComplexity = 400 in { // Prefer non-temporal versions
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntps\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>;
def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntpd\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>;
def MOVNTDQ_64mr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>;
let ExeDomain = SSEPackedInt in
def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
"movntdq\t{$src, $dst|$dst, $src}",
[(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>;
def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst),
(MOVNTDQmr addr:$dst, VR128:$src)>;
// There is no AVX form for instructions below this point
def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"movnti\t{$src, $dst|$dst, $src}",
[(nontemporalstore (i32 GR32:$src), addr:$dst)]>,
TB, Requires<[HasSSE2]>;
def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"movnti\t{$src, $dst|$dst, $src}",
[(nontemporalstore (i64 GR64:$src), addr:$dst)]>,
TB, Requires<[HasSSE2]>;
}
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Misc Instructions (No AVX form)
//===----------------------------------------------------------------------===//
// Prefetch intrinsic.
def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src),
"prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3))]>;
def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src),
"prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2))]>;
def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src),
"prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1))]>;
def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src),
"prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0))]>;
// Load, store, and memory fence
def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>,
TB, Requires<[HasSSE1]>;
def : Pat<(X86SFence), (SFENCE)>;
// Alias instructions that map zero vector to pxor / xorp* for sse.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-zeros value if folding it would be beneficial.
// FIXME: Change encoding to pseudo! This is blocked right now by the x86
// JIT implementation, it does not expand the instructions below like
// X86MCInstLower does.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isCodeGenOnly = 1 in {
def V_SET0PS : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4f32 immAllZerosV))]>;
def V_SET0PD : PDI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v2f64 immAllZerosV))]>;
let ExeDomain = SSEPackedInt in
def V_SET0PI : PDI<0xEF, MRMInitReg, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4i32 immAllZerosV))]>;
}
// The same as done above but for AVX. The 128-bit versions are the
// same, but re-encoded. The 256-bit does not support PI version.
// FIXME: Change encoding to pseudo! This is blocked right now by the x86
// JIT implementatioan, it does not expand the instructions below like
// X86MCInstLower does.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isCodeGenOnly = 1, Predicates = [HasAVX] in {
def AVX_SET0PS : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4f32 immAllZerosV))]>, VEX_4V;
def AVX_SET0PD : PDI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v2f64 immAllZerosV))]>, VEX_4V;
def AVX_SET0PSY : PSI<0x57, MRMInitReg, (outs VR256:$dst), (ins), "",
[(set VR256:$dst, (v8f32 immAllZerosV))]>, VEX_4V;
def AVX_SET0PDY : PDI<0x57, MRMInitReg, (outs VR256:$dst), (ins), "",
[(set VR256:$dst, (v4f64 immAllZerosV))]>, VEX_4V;
let ExeDomain = SSEPackedInt in
def AVX_SET0PI : PDI<0xEF, MRMInitReg, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4i32 immAllZerosV))]>;
}
def : Pat<(v2i64 immAllZerosV), (V_SET0PI)>;
def : Pat<(v8i16 immAllZerosV), (V_SET0PI)>;
def : Pat<(v16i8 immAllZerosV), (V_SET0PI)>;
def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
(f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>;
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Load/Store XCSR register
//===----------------------------------------------------------------------===//
def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
"ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, VEX;
def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, VEX;
def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
"ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>;
def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
"stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>;
//===---------------------------------------------------------------------===//
// SSE2 - Move Aligned/Unaligned Packed Integer Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in { // SSE integer instructions
let neverHasSideEffects = 1 in {
def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX;
def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX;
}
def VMOVDQUrr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX;
def VMOVDQUYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
"movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX;
let canFoldAsLoad = 1, mayLoad = 1 in {
def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX;
def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX;
let Predicates = [HasAVX] in {
def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX;
def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX;
}
}
let mayStore = 1 in {
def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs),
(ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX;
def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs),
(ins i256mem:$dst, VR256:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>, VEX;
let Predicates = [HasAVX] in {
def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX;
def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX;
}
}
let neverHasSideEffects = 1 in
def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}", []>;
def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[]>, XS, Requires<[HasSSE2]>;
let canFoldAsLoad = 1, mayLoad = 1 in {
def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>;
def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>,
XS, Requires<[HasSSE2]>;
}
let mayStore = 1 in {
def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqa\t{$src, $dst|$dst, $src}",
[/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>;
def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[/*(store (v2i64 VR128:$src), addr:$dst)*/]>,
XS, Requires<[HasSSE2]>;
}
// Intrinsic forms of MOVDQU load and store
def VMOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"vmovdqu\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>,
XS, VEX, Requires<[HasAVX]>;
def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
"movdqu\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>,
XS, Requires<[HasSSE2]>;
} // ExeDomain = SSEPackedInt
def : Pat<(int_x86_avx_loadu_dq_256 addr:$src), (VMOVDQUYrm addr:$src)>;
def : Pat<(int_x86_avx_storeu_dq_256 addr:$dst, VR256:$src),
(VMOVDQUYmr addr:$dst, VR256:$src)>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Arithmetic Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in { // SSE integer instructions
multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
bit IsCommutable = 0, bit Is2Addr = 1> {
let isCommutable = IsCommutable in
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId VR128:$src1,
(bitconvert (memopv2i64 addr:$src2))))]>;
}
multiclass PDI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm,
string OpcodeStr, Intrinsic IntId,
Intrinsic IntId2, bit Is2Addr = 1> {
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
Instruction fixes, added instructions, and AsmString changes in the X86 instruction tables. Also (while I was at it) cleaned up the X86 tables, removing tabs and 80-line violations. This patch was reviewed by Chris Lattner, but please let me know if there are any problems. * X86*.td Removed tabs and fixed 80-line violations * X86Instr64bit.td (IRET, POPCNT, BT_, LSL, SWPGS, PUSH_S, POP_S, L_S, SMSW) Added (CALL, CMOV) Added qualifiers (JMP) Added PC-relative jump instruction (POPFQ/PUSHFQ) Added qualifiers; renamed PUSHFQ to indicate that it is 64-bit only (ambiguous since it has no REX prefix) (MOV) Added rr form going the other way, which is encoded differently (MOV) Changed immediates to offsets, which is more correct; also fixed MOV64o64a to have to a 64-bit offset (MOV) Fixed qualifiers (MOV) Added debug-register and condition-register moves (MOVZX) Added more forms (ADC, SUB, SBB, AND, OR, XOR) Added reverse forms, which (as with MOV) are encoded differently (ROL) Made REX.W required (BT) Uncommented mr form for disassembly only (CVT__2__) Added several missing non-intrinsic forms (LXADD, XCHG) Reordered operands to make more sense for MRMSrcMem (XCHG) Added register-to-register forms (XADD, CMPXCHG, XCHG) Added non-locked forms * X86InstrSSE.td (CVTSS2SI, COMISS, CVTTPS2DQ, CVTPS2PD, CVTPD2PS, MOVQ) Added * X86InstrFPStack.td (COM_FST0, COMP_FST0, COM_FI, COM_FIP, FFREE, FNCLEX, FNOP, FXAM, FLDL2T, FLDL2E, FLDPI, FLDLG2, FLDLN2, F2XM1, FYL2X, FPTAN, FPATAN, FXTRACT, FPREM1, FDECSTP, FINCSTP, FPREM, FYL2XP1, FSINCOS, FRNDINT, FSCALE, FCOMPP, FXSAVE, FXRSTOR) Added (FCOM, FCOMP) Added qualifiers (FSTENV, FSAVE, FSTSW) Fixed opcode names (FNSTSW) Added implicit register operand * X86InstrInfo.td (opaque512mem) Added for FXSAVE/FXRSTOR (offset8, offset16, offset32, offset64) Added for MOV (NOOPW, IRET, POPCNT, IN, BTC, BTR, BTS, LSL, INVLPG, STR, LTR, PUSHFS, PUSHGS, POPFS, POPGS, LDS, LSS, LES, LFS, LGS, VERR, VERW, SGDT, SIDT, SLDT, LGDT, LIDT, LLDT, LODSD, OUTSB, OUTSW, OUTSD, HLT, RSM, FNINIT, CLC, STC, CLI, STI, CLD, STD, CMC, CLTS, XLAT, WRMSR, RDMSR, RDPMC, SMSW, LMSW, CPUID, INVD, WBINVD, INVEPT, INVVPID, VMCALL, VMCLEAR, VMLAUNCH, VMRESUME, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMXOFF, VMXON) Added (NOOPL, POPF, POPFD, PUSHF, PUSHFD) Added qualifier (JO, JNO, JB, JAE, JE, JNE, JBE, JA, JS, JNS, JP, JNP, JL, JGE, JLE, JG, JCXZ) Added 32-bit forms (MOV) Changed some immediate forms to offset forms (MOV) Added reversed reg-reg forms, which are encoded differently (MOV) Added debug-register and condition-register moves (CMOV) Added qualifiers (AND, OR, XOR, ADC, SUB, SBB) Added reverse forms, like MOV (BT) Uncommented memory-register forms for disassembler (MOVSX, MOVZX) Added forms (XCHG, LXADD) Made operand order make sense for MRMSrcMem (XCHG) Added register-register forms (XADD, CMPXCHG) Added unlocked forms * X86InstrMMX.td (MMX_MOVD, MMV_MOVQ) Added forms * X86InstrInfo.cpp: Changed PUSHFQ to PUSHFQ64 to reflect table change * X86RegisterInfo.td: Added debug and condition register sets * x86-64-pic-3.ll: Fixed testcase to reflect call qualifier * peep-test-3.ll: Fixed testcase to reflect test qualifier * cmov.ll: Fixed testcase to reflect cmov qualifier * loop-blocks.ll: Fixed testcase to reflect call qualifier * x86-64-pic-11.ll: Fixed testcase to reflect call qualifier * 2009-11-04-SubregCoalescingBug.ll: Fixed testcase to reflect call qualifier * x86-64-pic-2.ll: Fixed testcase to reflect call qualifier * live-out-reg-info.ll: Fixed testcase to reflect test qualifier * tail-opts.ll: Fixed testcase to reflect call qualifiers * x86-64-pic-10.ll: Fixed testcase to reflect call qualifier * bss-pagealigned.ll: Fixed testcase to reflect call qualifier * x86-64-pic-1.ll: Fixed testcase to reflect call qualifier * widen_load-1.ll: Fixed testcase to reflect call qualifier git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91638 91177308-0d34-0410-b5e6-96231b3b80d8
2009-12-18 00:01:26 +00:00
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId VR128:$src1,
(bitconvert (memopv2i64 addr:$src2))))]>;
def ri : PDIi8<opc2, ImmForm, (outs VR128:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId2 VR128:$src1, (i32 imm:$src2)))]>;
}
/// PDI_binop_rm - Simple SSE2 binary operator.
multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, bit IsCommutable = 0, bit Is2Addr = 1> {
let isCommutable = IsCommutable in
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]>;
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1,
(bitconvert (memopv2i64 addr:$src2)))))]>;
}
/// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64.
///
/// FIXME: we could eliminate this and use PDI_binop_rm instead if tblgen knew
/// to collapse (bitconvert VT to VT) into its operand.
///
multiclass PDI_binop_rm_v2i64<bits<8> opc, string OpcodeStr, SDNode OpNode,
bit IsCommutable = 0, bit Is2Addr = 1> {
let isCommutable = IsCommutable in
def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))]>;
def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (OpNode VR128:$src1, (memopv2i64 addr:$src2)))]>;
}
} // ExeDomain = SSEPackedInt
// 128-bit Integer Arithmetic
let Predicates = [HasAVX] in {
defm VPADDB : PDI_binop_rm<0xFC, "vpaddb", add, v16i8, 1, 0 /*3addr*/>, VEX_4V;
defm VPADDW : PDI_binop_rm<0xFD, "vpaddw", add, v8i16, 1, 0>, VEX_4V;
defm VPADDD : PDI_binop_rm<0xFE, "vpaddd", add, v4i32, 1, 0>, VEX_4V;
defm VPADDQ : PDI_binop_rm_v2i64<0xD4, "vpaddq", add, 1, 0>, VEX_4V;
defm VPMULLW : PDI_binop_rm<0xD5, "vpmullw", mul, v8i16, 1, 0>, VEX_4V;
defm VPSUBB : PDI_binop_rm<0xF8, "vpsubb", sub, v16i8, 0, 0>, VEX_4V;
defm VPSUBW : PDI_binop_rm<0xF9, "vpsubw", sub, v8i16, 0, 0>, VEX_4V;
defm VPSUBD : PDI_binop_rm<0xFA, "vpsubd", sub, v4i32, 0, 0>, VEX_4V;
defm VPSUBQ : PDI_binop_rm_v2i64<0xFB, "vpsubq", sub, 0, 0>, VEX_4V;
// Intrinsic forms
defm VPSUBSB : PDI_binop_rm_int<0xE8, "vpsubsb" , int_x86_sse2_psubs_b, 0, 0>,
VEX_4V;
defm VPSUBSW : PDI_binop_rm_int<0xE9, "vpsubsw" , int_x86_sse2_psubs_w, 0, 0>,
VEX_4V;
defm VPSUBUSB : PDI_binop_rm_int<0xD8, "vpsubusb", int_x86_sse2_psubus_b, 0, 0>,
VEX_4V;
defm VPSUBUSW : PDI_binop_rm_int<0xD9, "vpsubusw", int_x86_sse2_psubus_w, 0, 0>,
VEX_4V;
defm VPADDSB : PDI_binop_rm_int<0xEC, "vpaddsb" , int_x86_sse2_padds_b, 1, 0>,
VEX_4V;
defm VPADDSW : PDI_binop_rm_int<0xED, "vpaddsw" , int_x86_sse2_padds_w, 1, 0>,
VEX_4V;
defm VPADDUSB : PDI_binop_rm_int<0xDC, "vpaddusb", int_x86_sse2_paddus_b, 1, 0>,
VEX_4V;
defm VPADDUSW : PDI_binop_rm_int<0xDD, "vpaddusw", int_x86_sse2_paddus_w, 1, 0>,
VEX_4V;
defm VPMULHUW : PDI_binop_rm_int<0xE4, "vpmulhuw", int_x86_sse2_pmulhu_w, 1, 0>,
VEX_4V;
defm VPMULHW : PDI_binop_rm_int<0xE5, "vpmulhw" , int_x86_sse2_pmulh_w, 1, 0>,
VEX_4V;
defm VPMULUDQ : PDI_binop_rm_int<0xF4, "vpmuludq", int_x86_sse2_pmulu_dq, 1, 0>,
VEX_4V;
defm VPMADDWD : PDI_binop_rm_int<0xF5, "vpmaddwd", int_x86_sse2_pmadd_wd, 1, 0>,
VEX_4V;
defm VPAVGB : PDI_binop_rm_int<0xE0, "vpavgb", int_x86_sse2_pavg_b, 1, 0>,
VEX_4V;
defm VPAVGW : PDI_binop_rm_int<0xE3, "vpavgw", int_x86_sse2_pavg_w, 1, 0>,
VEX_4V;
defm VPMINUB : PDI_binop_rm_int<0xDA, "vpminub", int_x86_sse2_pminu_b, 1, 0>,
VEX_4V;
defm VPMINSW : PDI_binop_rm_int<0xEA, "vpminsw", int_x86_sse2_pmins_w, 1, 0>,
VEX_4V;
defm VPMAXUB : PDI_binop_rm_int<0xDE, "vpmaxub", int_x86_sse2_pmaxu_b, 1, 0>,
VEX_4V;
defm VPMAXSW : PDI_binop_rm_int<0xEE, "vpmaxsw", int_x86_sse2_pmaxs_w, 1, 0>,
VEX_4V;
defm VPSADBW : PDI_binop_rm_int<0xF6, "vpsadbw", int_x86_sse2_psad_bw, 1, 0>,
VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>;
defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>;
defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>;
defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>;
defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>;
defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>;
defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>;
defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>;
defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>;
// Intrinsic forms
defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>;
defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>;
defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>;
defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>;
defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>;
defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>;
defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>;
defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>;
defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>;
defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w, 1>;
defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>;
defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>;
defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>;
defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>;
defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>;
defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>;
defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>;
defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>;
defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, 1>;
} // Constraints = "$src1 = $dst"
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Logical Instructions
//===---------------------------------------------------------------------===//
let Predicates = [HasAVX] in {
defm VPSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "vpsllw",
int_x86_sse2_psll_w, int_x86_sse2_pslli_w, 0>,
VEX_4V;
defm VPSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "vpslld",
int_x86_sse2_psll_d, int_x86_sse2_pslli_d, 0>,
VEX_4V;
defm VPSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "vpsllq",
int_x86_sse2_psll_q, int_x86_sse2_pslli_q, 0>,
VEX_4V;
defm VPSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "vpsrlw",
int_x86_sse2_psrl_w, int_x86_sse2_psrli_w, 0>,
VEX_4V;
defm VPSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "vpsrld",
int_x86_sse2_psrl_d, int_x86_sse2_psrli_d, 0>,
VEX_4V;
defm VPSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "vpsrlq",
int_x86_sse2_psrl_q, int_x86_sse2_psrli_q, 0>,
VEX_4V;
defm VPSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "vpsraw",
int_x86_sse2_psra_w, int_x86_sse2_psrai_w, 0>,
VEX_4V;
defm VPSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "vpsrad",
int_x86_sse2_psra_d, int_x86_sse2_psrai_d, 0>,
VEX_4V;
defm VPAND : PDI_binop_rm_v2i64<0xDB, "vpand", and, 1, 0>, VEX_4V;
defm VPOR : PDI_binop_rm_v2i64<0xEB, "vpor" , or, 1, 0>, VEX_4V;
defm VPXOR : PDI_binop_rm_v2i64<0xEF, "vpxor", xor, 1, 0>, VEX_4V;
let ExeDomain = SSEPackedInt in {
let neverHasSideEffects = 1 in {
// 128-bit logical shifts.
def VPSLLDQri : PDIi8<0x73, MRM7r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"vpslldq\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
VEX_4V;
def VPSRLDQri : PDIi8<0x73, MRM3r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"vpsrldq\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
VEX_4V;
// PSRADQri doesn't exist in SSE[1-3].
}
def VPANDNrr : PDI<0xDF, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
VR128:$src2)))]>, VEX_4V;
def VPANDNrm : PDI<0xDF, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
(memopv2i64 addr:$src2))))]>,
VEX_4V;
}
}
let Constraints = "$src1 = $dst" in {
defm PSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw",
int_x86_sse2_psll_w, int_x86_sse2_pslli_w>;
defm PSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld",
int_x86_sse2_psll_d, int_x86_sse2_pslli_d>;
defm PSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq",
int_x86_sse2_psll_q, int_x86_sse2_pslli_q>;
defm PSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw",
int_x86_sse2_psrl_w, int_x86_sse2_psrli_w>;
defm PSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld",
int_x86_sse2_psrl_d, int_x86_sse2_psrli_d>;
defm PSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq",
int_x86_sse2_psrl_q, int_x86_sse2_psrli_q>;
defm PSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw",
int_x86_sse2_psra_w, int_x86_sse2_psrai_w>;
defm PSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad",
int_x86_sse2_psra_d, int_x86_sse2_psrai_d>;
defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>;
defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or, 1>;
defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>;
let ExeDomain = SSEPackedInt in {
let neverHasSideEffects = 1 in {
// 128-bit logical shifts.
def PSLLDQri : PDIi8<0x73, MRM7r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"pslldq\t{$src2, $dst|$dst, $src2}", []>;
def PSRLDQri : PDIi8<0x73, MRM3r,
(outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
"psrldq\t{$src2, $dst|$dst, $src2}", []>;
// PSRADQri doesn't exist in SSE[1-3].
}
def PANDNrr : PDI<0xDF, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"pandn\t{$src2, $dst|$dst, $src2}", []>;
def PANDNrm : PDI<0xDF, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"pandn\t{$src2, $dst|$dst, $src2}", []>;
}
} // Constraints = "$src1 = $dst"
let Predicates = [HasAVX] in {
def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
(v2i64 (VPSLLDQri VR128:$src1, (BYTE_imm imm:$src2)))>;
def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
(v2i64 (VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>;
def : Pat<(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2),
(v2i64 (VPSLLDQri VR128:$src1, imm:$src2))>;
def : Pat<(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2),
(v2i64 (VPSRLDQri VR128:$src1, imm:$src2))>;
def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
(v2f64 (VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>;
// Shift up / down and insert zero's.
def : Pat<(v2i64 (X86vshl VR128:$src, (i8 imm:$amt))),
(v2i64 (VPSLLDQri VR128:$src, (BYTE_imm imm:$amt)))>;
def : Pat<(v2i64 (X86vshr VR128:$src, (i8 imm:$amt))),
(v2i64 (VPSRLDQri VR128:$src, (BYTE_imm imm:$amt)))>;
}
let Predicates = [HasSSE2] in {
def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
(v2i64 (PSLLDQri VR128:$src1, (BYTE_imm imm:$src2)))>;
def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
(v2i64 (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>;
def : Pat<(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2),
(v2i64 (PSLLDQri VR128:$src1, imm:$src2))>;
def : Pat<(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2),
(v2i64 (PSRLDQri VR128:$src1, imm:$src2))>;
def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
(v2f64 (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>;
// Shift up / down and insert zero's.
def : Pat<(v2i64 (X86vshl VR128:$src, (i8 imm:$amt))),
(v2i64 (PSLLDQri VR128:$src, (BYTE_imm imm:$amt)))>;
def : Pat<(v2i64 (X86vshr VR128:$src, (i8 imm:$amt))),
(v2i64 (PSRLDQri VR128:$src, (BYTE_imm imm:$amt)))>;
}
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Comparison Instructions
//===---------------------------------------------------------------------===//
let Predicates = [HasAVX] in {
defm VPCMPEQB : PDI_binop_rm_int<0x74, "vpcmpeqb", int_x86_sse2_pcmpeq_b, 1,
0>, VEX_4V;
defm VPCMPEQW : PDI_binop_rm_int<0x75, "vpcmpeqw", int_x86_sse2_pcmpeq_w, 1,
0>, VEX_4V;
defm VPCMPEQD : PDI_binop_rm_int<0x76, "vpcmpeqd", int_x86_sse2_pcmpeq_d, 1,
0>, VEX_4V;
defm VPCMPGTB : PDI_binop_rm_int<0x64, "vpcmpgtb", int_x86_sse2_pcmpgt_b, 0,
0>, VEX_4V;
defm VPCMPGTW : PDI_binop_rm_int<0x65, "vpcmpgtw", int_x86_sse2_pcmpgt_w, 0,
0>, VEX_4V;
defm VPCMPGTD : PDI_binop_rm_int<0x66, "vpcmpgtd", int_x86_sse2_pcmpgt_d, 0,
0>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b, 1>;
defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w, 1>;
defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d, 1>;
defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>;
defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>;
defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>;
} // Constraints = "$src1 = $dst"
def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, VR128:$src2)),
(PCMPEQBrr VR128:$src1, VR128:$src2)>;
def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, (memop addr:$src2))),
(PCMPEQBrm VR128:$src1, addr:$src2)>;
def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, VR128:$src2)),
(PCMPEQWrr VR128:$src1, VR128:$src2)>;
def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, (memop addr:$src2))),
(PCMPEQWrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, VR128:$src2)),
(PCMPEQDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, (memop addr:$src2))),
(PCMPEQDrm VR128:$src1, addr:$src2)>;
def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, VR128:$src2)),
(PCMPGTBrr VR128:$src1, VR128:$src2)>;
def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, (memop addr:$src2))),
(PCMPGTBrm VR128:$src1, addr:$src2)>;
def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, VR128:$src2)),
(PCMPGTWrr VR128:$src1, VR128:$src2)>;
def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, (memop addr:$src2))),
(PCMPGTWrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, VR128:$src2)),
(PCMPGTDrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, (memop addr:$src2))),
(PCMPGTDrm VR128:$src1, addr:$src2)>;
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Pack Instructions
//===---------------------------------------------------------------------===//
let Predicates = [HasAVX] in {
defm VPACKSSWB : PDI_binop_rm_int<0x63, "vpacksswb", int_x86_sse2_packsswb_128,
0, 0>, VEX_4V;
defm VPACKSSDW : PDI_binop_rm_int<0x6B, "vpackssdw", int_x86_sse2_packssdw_128,
0, 0>, VEX_4V;
defm VPACKUSWB : PDI_binop_rm_int<0x67, "vpackuswb", int_x86_sse2_packuswb_128,
0, 0>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>;
defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>;
defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>;
} // Constraints = "$src1 = $dst"
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Shuffle Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pshuffle<string OpcodeStr, ValueType vt, PatFrag pshuf_frag,
PatFrag bc_frag> {
def ri : Ii8<0x70, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (vt (pshuf_frag:$src2 VR128:$src1,
(undef))))]>;
def mi : Ii8<0x70, MRMSrcMem,
(outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (vt (pshuf_frag:$src2
(bc_frag (memopv2i64 addr:$src1)),
(undef))))]>;
}
} // ExeDomain = SSEPackedInt
let Predicates = [HasAVX] in {
let AddedComplexity = 5 in
defm VPSHUFD : sse2_pshuffle<"vpshufd", v4i32, pshufd, bc_v4i32>, OpSize,
VEX;
// SSE2 with ImmT == Imm8 and XS prefix.
defm VPSHUFHW : sse2_pshuffle<"vpshufhw", v8i16, pshufhw, bc_v8i16>, XS,
VEX;
// SSE2 with ImmT == Imm8 and XD prefix.
defm VPSHUFLW : sse2_pshuffle<"vpshuflw", v8i16, pshuflw, bc_v8i16>, XD,
VEX;
}
let Predicates = [HasSSE2] in {
let AddedComplexity = 5 in
defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, pshufd, bc_v4i32>, TB, OpSize;
// SSE2 with ImmT == Imm8 and XS prefix.
defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, pshufhw, bc_v8i16>, XS;
// SSE2 with ImmT == Imm8 and XD prefix.
defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, pshuflw, bc_v8i16>, XD;
}
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Unpack Instructions
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt,
PatFrag unp_frag, PatFrag bc_frag, bit Is2Addr = 1> {
def rr : PDI<opc, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (vt (unp_frag VR128:$src1, VR128:$src2)))]>;
def rm : PDI<opc, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (unp_frag VR128:$src1,
(bc_frag (memopv2i64
addr:$src2))))]>;
}
let Predicates = [HasAVX] in {
defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, unpckl, bc_v16i8,
0>, VEX_4V;
defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, unpckl, bc_v8i16,
0>, VEX_4V;
defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, unpckl, bc_v4i32,
0>, VEX_4V;
/// FIXME: we could eliminate this and use sse2_unpack instead if tblgen
/// knew to collapse (bitconvert VT to VT) into its operand.
def VPUNPCKLQDQrr : PDI<0x6C, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vpunpcklqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1, VR128:$src2)))]>, VEX_4V;
def VPUNPCKLQDQrm : PDI<0x6C, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"vpunpcklqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1,
(memopv2i64 addr:$src2))))]>, VEX_4V;
defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, unpckh, bc_v16i8,
0>, VEX_4V;
defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, unpckh, bc_v8i16,
0>, VEX_4V;
defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, unpckh, bc_v4i32,
0>, VEX_4V;
/// FIXME: we could eliminate this and use sse2_unpack instead if tblgen
/// knew to collapse (bitconvert VT to VT) into its operand.
def VPUNPCKHQDQrr : PDI<0x6D, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"vpunpckhqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v2i64 (unpckh VR128:$src1, VR128:$src2)))]>, VEX_4V;
def VPUNPCKHQDQrm : PDI<0x6D, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"vpunpckhqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(v2i64 (unpckh VR128:$src1,
(memopv2i64 addr:$src2))))]>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, unpckl, bc_v16i8>;
defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, unpckl, bc_v8i16>;
defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, unpckl, bc_v4i32>;
/// FIXME: we could eliminate this and use sse2_unpack instead if tblgen
/// knew to collapse (bitconvert VT to VT) into its operand.
def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpcklqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1, VR128:$src2)))]>;
def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpcklqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckl VR128:$src1,
(memopv2i64 addr:$src2))))]>;
defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, unpckh, bc_v16i8>;
defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, unpckh, bc_v8i16>;
defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, unpckh, bc_v4i32>;
/// FIXME: we could eliminate this and use sse2_unpack instead if tblgen
/// knew to collapse (bitconvert VT to VT) into its operand.
def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
"punpckhqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckh VR128:$src1, VR128:$src2)))]>;
def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
"punpckhqdq\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (unpckh VR128:$src1,
(memopv2i64 addr:$src2))))]>;
}
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Integer Extract and Insert
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
multiclass sse2_pinsrw<bit Is2Addr = 1> {
def rri : Ii8<0xC4, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1,
GR32:$src2, i32i8imm:$src3),
!if(Is2Addr,
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
"vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))]>;
def rmi : Ii8<0xC4, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1,
i16mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
"pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
"vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set VR128:$dst,
(X86pinsrw VR128:$src1, (extloadi16 addr:$src2),
imm:$src3))]>;
}
// Extract
let Predicates = [HasAVX] in
def VPEXTRWri : Ii8<0xC5, MRMSrcReg,
(outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2),
"vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1),
imm:$src2))]>, OpSize, VEX;
def PEXTRWri : PDIi8<0xC5, MRMSrcReg,
(outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2),
"pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1),
imm:$src2))]>;
// Insert
let Predicates = [HasAVX] in {
defm VPINSRW : sse2_pinsrw<0>, OpSize, VEX_4V;
def VPINSRWrr64i : Ii8<0xC4, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
"vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, OpSize, VEX_4V;
}
let Constraints = "$src1 = $dst" in
defm PINSRW : sse2_pinsrw, TB, OpSize, Requires<[HasSSE2]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Packed Mask Creation
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>, VEX;
def VPMOVMSKBr64r : VPDI<0xD7, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}", []>, VEX;
def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
"pmovmskb\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Conditional Store
//===---------------------------------------------------------------------===//
let ExeDomain = SSEPackedInt in {
let Uses = [EDI] in
def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs),
(ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>, VEX;
let Uses = [RDI] in
def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs),
(ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>, VEX;
let Uses = [EDI] in
def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>;
let Uses = [RDI] in
def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
"maskmovdqu\t{$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>;
} // ExeDomain = SSEPackedInt
//===---------------------------------------------------------------------===//
// SSE2 - Move Doubleword
//===---------------------------------------------------------------------===//
// Move Int Doubleword to Packed Double Int
def VMOVDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))]>, VEX;
def VMOVDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))]>,
VEX;
def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))]>;
def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))]>;
def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector GR64:$src)))]>;
def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert GR64:$src))]>;
// Move Int Doubleword to Single Scalar
def VMOVDI2SSrr : VPDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))]>, VEX;
def VMOVDI2SSrm : VPDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>,
VEX;
def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))]>;
def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>;
// Move Packed Doubleword Int to Packed Double Int
def VMOVPDI2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
(iPTR 0)))]>, VEX;
def VMOVPDI2DImr : VPDI<0x7E, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (vector_extract (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)]>, VEX;
def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
(iPTR 0)))]>;
def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (vector_extract (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)]>;
def MOVPQIto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
(iPTR 0)))]>;
def MOV64toSDrm : S3SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>;
def MOVSDto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64:$src))]>;
def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64:$src)), addr:$dst)]>;
// Move Scalar Single to Double Int
def VMOVSS2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))]>, VEX;
def VMOVSS2DImr : VPDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)]>, VEX;
def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))]>;
def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)]>;
// movd / movq to XMM register zero-extends
let AddedComplexity = 15 in {
def VMOVZDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector GR32:$src)))))]>,
VEX;
def VMOVZQI2PQIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only
[(set VR128:$dst, (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector GR64:$src)))))]>,
VEX, VEX_W;
}
let AddedComplexity = 15 in {
def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector GR32:$src)))))]>;
def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only
[(set VR128:$dst, (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector GR64:$src)))))]>;
}
let AddedComplexity = 20 in {
def VMOVZDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86vzmovl (v4i32 (scalar_to_vector
(loadi32 addr:$src))))))]>,
VEX;
def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
"movd\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (X86vzmovl (v4i32 (scalar_to_vector
(loadi32 addr:$src))))))]>;
def : Pat<(v4i32 (X86vzmovl (loadv4i32 addr:$src))),
(MOVZDI2PDIrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))),
(MOVZDI2PDIrm addr:$src)>;
Disable some DAG combiner optimizations that may be wrong for volatile loads and stores. In fact this is almost all of them! There are three types of problems: (1) it is wrong to change the width of a volatile memory access. These may be used to do memory mapped i/o, in which case a load can have an effect even if the result is not used. Consider loading an i32 but only using the lower 8 bits. It is wrong to change this into a load of an i8, because you are no longer tickling the other three bytes. It is also unwise to make a load/store wider. For example, changing an i16 load into an i32 load is wrong no matter how aligned things are, since the fact of loading an additional 2 bytes can have i/o side-effects. (2) it is wrong to change the number of volatile load/stores: they may be counted by the hardware. (3) it is wrong to change a volatile load/store that requires one memory access into one that requires several. For example on x86-32, you can store a double in one processor operation, but to store an i64 requires two (two i32 stores). In a multi-threaded program you may want to bitcast an i64 to a double and store as a double because that will occur atomically, and be indivisible to other threads. So it would be wrong to convert the store-of-double into a store of an i64, because this will become two i32 stores - no longer atomic. My policy here is to say that the number of processor operations for an illegal operation is undefined. So it is alright to change a store of an i64 (requires at least two stores; but could be validly lowered to memcpy for example) into a store of double (one processor op). In short, if the new store is legal and has the same size then I say that the transform is ok. It would also be possible to say that transforms are always ok if before they were illegal, whether after they are illegal or not, but that's more awkward to do and I doubt it buys us anything much. However this exposed an interesting thing - on x86-32 a store of i64 is considered legal! That is because operations are marked legal by default, regardless of whether the type is legal or not. In some ways this is clever: before type legalization this means that operations on illegal types are considered legal; after type legalization there are no illegal types so now operations are only legal if they really are. But I consider this to be too cunning for mere mortals. Better to do things explicitly by testing AfterLegalize. So I have changed things so that operations with illegal types are considered illegal - indeed they can never map to a machine operation. However this means that the DAG combiner is more conservative because before it was "accidentally" performing transforms where the type was illegal because the operation was nonetheless marked legal. So in a few such places I added a check on AfterLegalize, which I suppose was actually just forgotten before. This causes the DAG combiner to do slightly more than it used to, which resulted in the X86 backend blowing up because it got a slightly surprising node it wasn't expecting, so I tweaked it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52254 91177308-0d34-0410-b5e6-96231b3b80d8
2008-06-13 19:07:40 +00:00
def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
(MOVZDI2PDIrm addr:$src)>;
}
//===---------------------------------------------------------------------===//
// SSE2 - Move Quadword
//===---------------------------------------------------------------------===//
// Move Quadword Int to Packed Quadword Int
def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
VEX, Requires<[HasAVX]>;
def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
Requires<[HasSSE2]>; // SSE2 instruction with XS Prefix
// Move Packed Quadword Int to Quadword Int
def VMOVPQI2QImr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)]>, VEX;
def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
(f64 (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>;
// Store / copy lower 64-bits of a XMM register.
def VMOVLQ128mr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>, VEX;
def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>;
let AddedComplexity = 20 in
def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (X86vzmovl (v2i64 (scalar_to_vector
(loadi64 addr:$src))))))]>,
XS, VEX, Requires<[HasAVX]>;
let AddedComplexity = 20 in {
def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (X86vzmovl (v2i64 (scalar_to_vector
(loadi64 addr:$src))))))]>,
XS, Requires<[HasSSE2]>;
def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
(MOVZQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))),
(MOVZQI2PQIrm addr:$src)>;
def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>;
}
// Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in
// IA32 document. movq xmm1, xmm2 does clear the high bits.
let AddedComplexity = 15 in
def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>,
XS, VEX, Requires<[HasAVX]>;
let AddedComplexity = 15 in
def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>,
XS, Requires<[HasSSE2]>;
let AddedComplexity = 20 in
def VMOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl
(loadv2i64 addr:$src))))]>,
XS, VEX, Requires<[HasAVX]>;
let AddedComplexity = 20 in {
def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (X86vzmovl
(loadv2i64 addr:$src))))]>,
XS, Requires<[HasSSE2]>;
def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4i32 addr:$src)))),
(MOVZPQILo2PQIrm addr:$src)>;
}
// Instructions to match in the assembler
def VMOVQs64rr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W;
def VMOVQd64rr : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W;
// Recognize "movd" with GR64 destination, but encode as a "movq"
def VMOVQd64rr_alt : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"movd\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W;
Instruction fixes, added instructions, and AsmString changes in the X86 instruction tables. Also (while I was at it) cleaned up the X86 tables, removing tabs and 80-line violations. This patch was reviewed by Chris Lattner, but please let me know if there are any problems. * X86*.td Removed tabs and fixed 80-line violations * X86Instr64bit.td (IRET, POPCNT, BT_, LSL, SWPGS, PUSH_S, POP_S, L_S, SMSW) Added (CALL, CMOV) Added qualifiers (JMP) Added PC-relative jump instruction (POPFQ/PUSHFQ) Added qualifiers; renamed PUSHFQ to indicate that it is 64-bit only (ambiguous since it has no REX prefix) (MOV) Added rr form going the other way, which is encoded differently (MOV) Changed immediates to offsets, which is more correct; also fixed MOV64o64a to have to a 64-bit offset (MOV) Fixed qualifiers (MOV) Added debug-register and condition-register moves (MOVZX) Added more forms (ADC, SUB, SBB, AND, OR, XOR) Added reverse forms, which (as with MOV) are encoded differently (ROL) Made REX.W required (BT) Uncommented mr form for disassembly only (CVT__2__) Added several missing non-intrinsic forms (LXADD, XCHG) Reordered operands to make more sense for MRMSrcMem (XCHG) Added register-to-register forms (XADD, CMPXCHG, XCHG) Added non-locked forms * X86InstrSSE.td (CVTSS2SI, COMISS, CVTTPS2DQ, CVTPS2PD, CVTPD2PS, MOVQ) Added * X86InstrFPStack.td (COM_FST0, COMP_FST0, COM_FI, COM_FIP, FFREE, FNCLEX, FNOP, FXAM, FLDL2T, FLDL2E, FLDPI, FLDLG2, FLDLN2, F2XM1, FYL2X, FPTAN, FPATAN, FXTRACT, FPREM1, FDECSTP, FINCSTP, FPREM, FYL2XP1, FSINCOS, FRNDINT, FSCALE, FCOMPP, FXSAVE, FXRSTOR) Added (FCOM, FCOMP) Added qualifiers (FSTENV, FSAVE, FSTSW) Fixed opcode names (FNSTSW) Added implicit register operand * X86InstrInfo.td (opaque512mem) Added for FXSAVE/FXRSTOR (offset8, offset16, offset32, offset64) Added for MOV (NOOPW, IRET, POPCNT, IN, BTC, BTR, BTS, LSL, INVLPG, STR, LTR, PUSHFS, PUSHGS, POPFS, POPGS, LDS, LSS, LES, LFS, LGS, VERR, VERW, SGDT, SIDT, SLDT, LGDT, LIDT, LLDT, LODSD, OUTSB, OUTSW, OUTSD, HLT, RSM, FNINIT, CLC, STC, CLI, STI, CLD, STD, CMC, CLTS, XLAT, WRMSR, RDMSR, RDPMC, SMSW, LMSW, CPUID, INVD, WBINVD, INVEPT, INVVPID, VMCALL, VMCLEAR, VMLAUNCH, VMRESUME, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMXOFF, VMXON) Added (NOOPL, POPF, POPFD, PUSHF, PUSHFD) Added qualifier (JO, JNO, JB, JAE, JE, JNE, JBE, JA, JS, JNS, JP, JNP, JL, JGE, JLE, JG, JCXZ) Added 32-bit forms (MOV) Changed some immediate forms to offset forms (MOV) Added reversed reg-reg forms, which are encoded differently (MOV) Added debug-register and condition-register moves (CMOV) Added qualifiers (AND, OR, XOR, ADC, SUB, SBB) Added reverse forms, like MOV (BT) Uncommented memory-register forms for disassembler (MOVSX, MOVZX) Added forms (XCHG, LXADD) Made operand order make sense for MRMSrcMem (XCHG) Added register-register forms (XADD, CMPXCHG) Added unlocked forms * X86InstrMMX.td (MMX_MOVD, MMV_MOVQ) Added forms * X86InstrInfo.cpp: Changed PUSHFQ to PUSHFQ64 to reflect table change * X86RegisterInfo.td: Added debug and condition register sets * x86-64-pic-3.ll: Fixed testcase to reflect call qualifier * peep-test-3.ll: Fixed testcase to reflect test qualifier * cmov.ll: Fixed testcase to reflect cmov qualifier * loop-blocks.ll: Fixed testcase to reflect call qualifier * x86-64-pic-11.ll: Fixed testcase to reflect call qualifier * 2009-11-04-SubregCoalescingBug.ll: Fixed testcase to reflect call qualifier * x86-64-pic-2.ll: Fixed testcase to reflect call qualifier * live-out-reg-info.ll: Fixed testcase to reflect test qualifier * tail-opts.ll: Fixed testcase to reflect call qualifiers * x86-64-pic-10.ll: Fixed testcase to reflect call qualifier * bss-pagealigned.ll: Fixed testcase to reflect call qualifier * x86-64-pic-1.ll: Fixed testcase to reflect call qualifier * widen_load-1.ll: Fixed testcase to reflect call qualifier git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91638 91177308-0d34-0410-b5e6-96231b3b80d8
2009-12-18 00:01:26 +00:00
// Instructions for the disassembler
// xr = XMM register
// xm = mem64
let Predicates = [HasAVX] in
def VMOVQxrxr: I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vmovq\t{$src, $dst|$dst, $src}", []>, VEX, XS;
Instruction fixes, added instructions, and AsmString changes in the X86 instruction tables. Also (while I was at it) cleaned up the X86 tables, removing tabs and 80-line violations. This patch was reviewed by Chris Lattner, but please let me know if there are any problems. * X86*.td Removed tabs and fixed 80-line violations * X86Instr64bit.td (IRET, POPCNT, BT_, LSL, SWPGS, PUSH_S, POP_S, L_S, SMSW) Added (CALL, CMOV) Added qualifiers (JMP) Added PC-relative jump instruction (POPFQ/PUSHFQ) Added qualifiers; renamed PUSHFQ to indicate that it is 64-bit only (ambiguous since it has no REX prefix) (MOV) Added rr form going the other way, which is encoded differently (MOV) Changed immediates to offsets, which is more correct; also fixed MOV64o64a to have to a 64-bit offset (MOV) Fixed qualifiers (MOV) Added debug-register and condition-register moves (MOVZX) Added more forms (ADC, SUB, SBB, AND, OR, XOR) Added reverse forms, which (as with MOV) are encoded differently (ROL) Made REX.W required (BT) Uncommented mr form for disassembly only (CVT__2__) Added several missing non-intrinsic forms (LXADD, XCHG) Reordered operands to make more sense for MRMSrcMem (XCHG) Added register-to-register forms (XADD, CMPXCHG, XCHG) Added non-locked forms * X86InstrSSE.td (CVTSS2SI, COMISS, CVTTPS2DQ, CVTPS2PD, CVTPD2PS, MOVQ) Added * X86InstrFPStack.td (COM_FST0, COMP_FST0, COM_FI, COM_FIP, FFREE, FNCLEX, FNOP, FXAM, FLDL2T, FLDL2E, FLDPI, FLDLG2, FLDLN2, F2XM1, FYL2X, FPTAN, FPATAN, FXTRACT, FPREM1, FDECSTP, FINCSTP, FPREM, FYL2XP1, FSINCOS, FRNDINT, FSCALE, FCOMPP, FXSAVE, FXRSTOR) Added (FCOM, FCOMP) Added qualifiers (FSTENV, FSAVE, FSTSW) Fixed opcode names (FNSTSW) Added implicit register operand * X86InstrInfo.td (opaque512mem) Added for FXSAVE/FXRSTOR (offset8, offset16, offset32, offset64) Added for MOV (NOOPW, IRET, POPCNT, IN, BTC, BTR, BTS, LSL, INVLPG, STR, LTR, PUSHFS, PUSHGS, POPFS, POPGS, LDS, LSS, LES, LFS, LGS, VERR, VERW, SGDT, SIDT, SLDT, LGDT, LIDT, LLDT, LODSD, OUTSB, OUTSW, OUTSD, HLT, RSM, FNINIT, CLC, STC, CLI, STI, CLD, STD, CMC, CLTS, XLAT, WRMSR, RDMSR, RDPMC, SMSW, LMSW, CPUID, INVD, WBINVD, INVEPT, INVVPID, VMCALL, VMCLEAR, VMLAUNCH, VMRESUME, VMPTRLD, VMPTRST, VMREAD, VMWRITE, VMXOFF, VMXON) Added (NOOPL, POPF, POPFD, PUSHF, PUSHFD) Added qualifier (JO, JNO, JB, JAE, JE, JNE, JBE, JA, JS, JNS, JP, JNP, JL, JGE, JLE, JG, JCXZ) Added 32-bit forms (MOV) Changed some immediate forms to offset forms (MOV) Added reversed reg-reg forms, which are encoded differently (MOV) Added debug-register and condition-register moves (CMOV) Added qualifiers (AND, OR, XOR, ADC, SUB, SBB) Added reverse forms, like MOV (BT) Uncommented memory-register forms for disassembler (MOVSX, MOVZX) Added forms (XCHG, LXADD) Made operand order make sense for MRMSrcMem (XCHG) Added register-register forms (XADD, CMPXCHG) Added unlocked forms * X86InstrMMX.td (MMX_MOVD, MMV_MOVQ) Added forms * X86InstrInfo.cpp: Changed PUSHFQ to PUSHFQ64 to reflect table change * X86RegisterInfo.td: Added debug and condition register sets * x86-64-pic-3.ll: Fixed testcase to reflect call qualifier * peep-test-3.ll: Fixed testcase to reflect test qualifier * cmov.ll: Fixed testcase to reflect cmov qualifier * loop-blocks.ll: Fixed testcase to reflect call qualifier * x86-64-pic-11.ll: Fixed testcase to reflect call qualifier * 2009-11-04-SubregCoalescingBug.ll: Fixed testcase to reflect call qualifier * x86-64-pic-2.ll: Fixed testcase to reflect call qualifier * live-out-reg-info.ll: Fixed testcase to reflect test qualifier * tail-opts.ll: Fixed testcase to reflect call qualifiers * x86-64-pic-10.ll: Fixed testcase to reflect call qualifier * bss-pagealigned.ll: Fixed testcase to reflect call qualifier * x86-64-pic-1.ll: Fixed testcase to reflect call qualifier * widen_load-1.ll: Fixed testcase to reflect call qualifier git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91638 91177308-0d34-0410-b5e6-96231b3b80d8
2009-12-18 00:01:26 +00:00
def MOVQxrxr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"movq\t{$src, $dst|$dst, $src}", []>, XS;
//===---------------------------------------------------------------------===//
// SSE2 - Misc Instructions
//===---------------------------------------------------------------------===//
// Flush cache
def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
"clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>,
TB, Requires<[HasSSE2]>;
// Load, store, and memory fence
def LFENCE : I<0xAE, MRM_E8, (outs), (ins),
"lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>;
def MFENCE : I<0xAE, MRM_F0, (outs), (ins),
"mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>;
def : Pat<(X86LFence), (LFENCE)>;
def : Pat<(X86MFence), (MFENCE)>;
// Pause. This "instruction" is encoded as "rep; nop", so even though it
// was introduced with SSE2, it's backward compatible.
def PAUSE : I<0x90, RawFrm, (outs), (ins), "pause", []>, REP;
// Alias instructions that map zero vector to pxor / xorp* for sse.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-ones value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isCodeGenOnly = 1, ExeDomain = SSEPackedInt in
// FIXME: Change encoding to pseudo.
def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins), "",
[(set VR128:$dst, (v4i32 immAllOnesV))]>;
//===---------------------------------------------------------------------===//
// SSE3 - Conversion Instructions
//===---------------------------------------------------------------------===//
// Convert Packed Double FP to Packed DW Integers
let Predicates = [HasAVX] in {
// The assembler can recognize rr 256-bit instructions by seeing a ymm
// register, but the same isn't true when using memory operands instead.
// Provide other assembly rr and rm forms to address this explicitly.
def VCVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtpd2dq\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPD2DQXrYr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"vcvtpd2dq\t{$src, $dst|$dst, $src}", []>, VEX;
// XMM only
def VCVTPD2DQXrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPD2DQXrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"vcvtpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX;
// YMM only
def VCVTPD2DQYrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
"vcvtpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTPD2DQYrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
"vcvtpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L;
}
def CVTPD2DQrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}", []>;
def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtpd2dq\t{$src, $dst|$dst, $src}", []>;
// Convert Packed DW Integers to Packed Double FP
let Predicates = [HasAVX] in {
def VCVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTDQ2PDYrm : S3SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX;
def VCVTDQ2PDYrr : S3SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
"vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX;
}
def CVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}", []>;
def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
"cvtdq2pd\t{$src, $dst|$dst, $src}", []>;
// AVX 256-bit register conversion intrinsics
def : Pat<(int_x86_avx_cvtdq2_pd_256 VR128:$src),
(VCVTDQ2PDYrr VR128:$src)>;
def : Pat<(int_x86_avx_cvtdq2_pd_256 (memopv4i32 addr:$src)),
(VCVTDQ2PDYrm addr:$src)>;
def : Pat<(int_x86_avx_cvt_pd2dq_256 VR256:$src),
(VCVTPD2DQYrr VR256:$src)>;
def : Pat<(int_x86_avx_cvt_pd2dq_256 (memopv4f64 addr:$src)),
(VCVTPD2DQYrm addr:$src)>;
//===---------------------------------------------------------------------===//
// SSE3 - Move Instructions
//===---------------------------------------------------------------------===//
// Replicate Single FP
multiclass sse3_replicate_sfp<bits<8> op, PatFrag rep_frag, string OpcodeStr> {
def rr : S3SI<op, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (rep_frag
VR128:$src, (undef))))]>;
def rm : S3SI<op, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (rep_frag
(memopv4f32 addr:$src), (undef)))]>;
}
multiclass sse3_replicate_sfp_y<bits<8> op, PatFrag rep_frag,
string OpcodeStr> {
def rr : S3SI<op, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>;
def rm : S3SI<op, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>;
}
let Predicates = [HasAVX] in {
// FIXME: Merge above classes when we have patterns for the ymm version
defm VMOVSHDUP : sse3_replicate_sfp<0x16, movshdup, "vmovshdup">, VEX;
defm VMOVSLDUP : sse3_replicate_sfp<0x12, movsldup, "vmovsldup">, VEX;
defm VMOVSHDUPY : sse3_replicate_sfp_y<0x16, movshdup, "vmovshdup">, VEX;
defm VMOVSLDUPY : sse3_replicate_sfp_y<0x12, movsldup, "vmovsldup">, VEX;
}
defm MOVSHDUP : sse3_replicate_sfp<0x16, movshdup, "movshdup">;
defm MOVSLDUP : sse3_replicate_sfp<0x12, movsldup, "movsldup">;
// Replicate Double FP
multiclass sse3_replicate_dfp<string OpcodeStr> {
def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,(v2f64 (movddup VR128:$src, (undef))))]>;
def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(v2f64 (movddup (scalar_to_vector (loadf64 addr:$src)),
(undef))))]>;
}
multiclass sse3_replicate_dfp_y<string OpcodeStr> {
def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[]>;
def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[]>;
}
let Predicates = [HasAVX] in {
// FIXME: Merge above classes when we have patterns for the ymm version
defm VMOVDDUP : sse3_replicate_dfp<"vmovddup">, VEX;
defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup">, VEX;
}
defm MOVDDUP : sse3_replicate_dfp<"movddup">;
// Move Unaligned Integer
let Predicates = [HasAVX] in {
def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vlddqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, VEX;
def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
"vlddqu\t{$src, $dst|$dst, $src}",
[(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>, VEX;
}
def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"lddqu\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>;
def : Pat<(movddup (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src)))),
(undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
// Several Move patterns
let AddedComplexity = 5 in {
def : Pat<(movddup (memopv2f64 addr:$src), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
def : Pat<(movddup (bc_v4f32 (memopv2f64 addr:$src)), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
def : Pat<(movddup (memopv2i64 addr:$src), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
def : Pat<(movddup (bc_v4i32 (memopv2i64 addr:$src)), (undef)),
(MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>;
}
// vector_shuffle v1, <undef> <1, 1, 3, 3>
let AddedComplexity = 15 in
def : Pat<(v4i32 (movshdup VR128:$src, (undef))),
(MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
def : Pat<(v4i32 (movshdup (bc_v4i32 (memopv2i64 addr:$src)), (undef))),
(MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>;
// vector_shuffle v1, <undef> <0, 0, 2, 2>
let AddedComplexity = 15 in
def : Pat<(v4i32 (movsldup VR128:$src, (undef))),
(MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
def : Pat<(v4i32 (movsldup (bc_v4i32 (memopv2i64 addr:$src)), (undef))),
(MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>;
//===---------------------------------------------------------------------===//
// SSE3 - Arithmetic
//===---------------------------------------------------------------------===//
multiclass sse3_addsub<Intrinsic Int, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, bit Is2Addr = 1> {
def rr : I<0xD0, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (Int RC:$src1, RC:$src2))]>;
def rm : I<0xD0, MRMSrcMem,
(outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (Int RC:$src1, (memop addr:$src2)))]>;
}
let Predicates = [HasAVX],
ExeDomain = SSEPackedDouble in {
defm VADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "vaddsubps", VR128,
f128mem, 0>, TB, XD, VEX_4V;
defm VADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "vaddsubpd", VR128,
f128mem, 0>, TB, OpSize, VEX_4V;
defm VADDSUBPSY : sse3_addsub<int_x86_avx_addsub_ps_256, "vaddsubps", VR256,
f256mem, 0>, TB, XD, VEX_4V;
defm VADDSUBPDY : sse3_addsub<int_x86_avx_addsub_pd_256, "vaddsubpd", VR256,
f256mem, 0>, TB, OpSize, VEX_4V;
}
let Constraints = "$src1 = $dst", Predicates = [HasSSE3],
ExeDomain = SSEPackedDouble in {
defm ADDSUBPS : sse3_addsub<int_x86_sse3_addsub_ps, "addsubps", VR128,
f128mem>, TB, XD;
defm ADDSUBPD : sse3_addsub<int_x86_sse3_addsub_pd, "addsubpd", VR128,
f128mem>, TB, OpSize;
}
//===---------------------------------------------------------------------===//
// SSE3 Instructions
//===---------------------------------------------------------------------===//
// Horizontal ops
multiclass S3D_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
X86MemOperand x86memop, Intrinsic IntId, bit Is2Addr = 1> {
def rr : S3DI<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (IntId RC:$src1, RC:$src2)))]>;
def rm : S3DI<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (IntId RC:$src1, (memop addr:$src2))))]>;
}
multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
X86MemOperand x86memop, Intrinsic IntId, bit Is2Addr = 1> {
def rr : S3I<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (IntId RC:$src1, RC:$src2)))]>;
def rm : S3I<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set RC:$dst, (vt (IntId RC:$src1, (memop addr:$src2))))]>;
}
let Predicates = [HasAVX] in {
defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem,
int_x86_sse3_hadd_ps, 0>, VEX_4V;
defm VHADDPD : S3_Int <0x7C, "vhaddpd", v2f64, VR128, f128mem,
int_x86_sse3_hadd_pd, 0>, VEX_4V;
defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem,
int_x86_sse3_hsub_ps, 0>, VEX_4V;
defm VHSUBPD : S3_Int <0x7D, "vhsubpd", v2f64, VR128, f128mem,
int_x86_sse3_hsub_pd, 0>, VEX_4V;
defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem,
int_x86_avx_hadd_ps_256, 0>, VEX_4V;
defm VHADDPDY : S3_Int <0x7C, "vhaddpd", v4f64, VR256, f256mem,
int_x86_avx_hadd_pd_256, 0>, VEX_4V;
defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem,
int_x86_avx_hsub_ps_256, 0>, VEX_4V;
defm VHSUBPDY : S3_Int <0x7D, "vhsubpd", v4f64, VR256, f256mem,
int_x86_avx_hsub_pd_256, 0>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem,
int_x86_sse3_hadd_ps>;
defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem,
int_x86_sse3_hadd_pd>;
defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem,
int_x86_sse3_hsub_ps>;
defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem,
int_x86_sse3_hsub_pd>;
}
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Absolute Instructions
//===---------------------------------------------------------------------===//
/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr,
PatFrag mem_frag128, Intrinsic IntId128> {
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))]>,
OpSize;
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
(bitconvert (mem_frag128 addr:$src))))]>, OpSize;
}
let Predicates = [HasAVX] in {
defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb", memopv16i8,
int_x86_ssse3_pabs_b_128>, VEX;
defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw", memopv8i16,
int_x86_ssse3_pabs_w_128>, VEX;
defm VPABSD : SS3I_unop_rm_int<0x1E, "vpabsd", memopv4i32,
int_x86_ssse3_pabs_d_128>, VEX;
}
defm PABSB : SS3I_unop_rm_int<0x1C, "pabsb", memopv16i8,
int_x86_ssse3_pabs_b_128>;
defm PABSW : SS3I_unop_rm_int<0x1D, "pabsw", memopv8i16,
int_x86_ssse3_pabs_w_128>;
defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd", memopv4i32,
int_x86_ssse3_pabs_d_128>;
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Binary Operator Instructions
//===---------------------------------------------------------------------===//
/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}.
multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr,
PatFrag mem_frag128, Intrinsic IntId128,
bit Is2Addr = 1> {
let isCommutable = 1 in
def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize;
def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
}
let Predicates = [HasAVX] in {
let isCommutable = 0 in {
defm VPHADDW : SS3I_binop_rm_int<0x01, "vphaddw", memopv8i16,
int_x86_ssse3_phadd_w_128, 0>, VEX_4V;
defm VPHADDD : SS3I_binop_rm_int<0x02, "vphaddd", memopv4i32,
int_x86_ssse3_phadd_d_128, 0>, VEX_4V;
defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw", memopv8i16,
int_x86_ssse3_phadd_sw_128, 0>, VEX_4V;
defm VPHSUBW : SS3I_binop_rm_int<0x05, "vphsubw", memopv8i16,
int_x86_ssse3_phsub_w_128, 0>, VEX_4V;
defm VPHSUBD : SS3I_binop_rm_int<0x06, "vphsubd", memopv4i32,
int_x86_ssse3_phsub_d_128, 0>, VEX_4V;
defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw", memopv8i16,
int_x86_ssse3_phsub_sw_128, 0>, VEX_4V;
defm VPMADDUBSW : SS3I_binop_rm_int<0x04, "vpmaddubsw", memopv16i8,
int_x86_ssse3_pmadd_ub_sw_128, 0>, VEX_4V;
defm VPSHUFB : SS3I_binop_rm_int<0x00, "vpshufb", memopv16i8,
int_x86_ssse3_pshuf_b_128, 0>, VEX_4V;
defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb", memopv16i8,
int_x86_ssse3_psign_b_128, 0>, VEX_4V;
defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw", memopv8i16,
int_x86_ssse3_psign_w_128, 0>, VEX_4V;
defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd", memopv4i32,
int_x86_ssse3_psign_d_128, 0>, VEX_4V;
}
defm VPMULHRSW : SS3I_binop_rm_int<0x0B, "vpmulhrsw", memopv8i16,
int_x86_ssse3_pmul_hr_sw_128, 0>, VEX_4V;
}
// None of these have i8 immediate fields.
let ImmT = NoImm, Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
defm PHADDW : SS3I_binop_rm_int<0x01, "phaddw", memopv8i16,
int_x86_ssse3_phadd_w_128>;
defm PHADDD : SS3I_binop_rm_int<0x02, "phaddd", memopv4i32,
int_x86_ssse3_phadd_d_128>;
defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw", memopv8i16,
int_x86_ssse3_phadd_sw_128>;
defm PHSUBW : SS3I_binop_rm_int<0x05, "phsubw", memopv8i16,
int_x86_ssse3_phsub_w_128>;
defm PHSUBD : SS3I_binop_rm_int<0x06, "phsubd", memopv4i32,
int_x86_ssse3_phsub_d_128>;
defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw", memopv8i16,
int_x86_ssse3_phsub_sw_128>;
defm PMADDUBSW : SS3I_binop_rm_int<0x04, "pmaddubsw", memopv16i8,
int_x86_ssse3_pmadd_ub_sw_128>;
defm PSHUFB : SS3I_binop_rm_int<0x00, "pshufb", memopv16i8,
int_x86_ssse3_pshuf_b_128>;
defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", memopv16i8,
int_x86_ssse3_psign_b_128>;
defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", memopv8i16,
int_x86_ssse3_psign_w_128>;
defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", memopv4i32,
int_x86_ssse3_psign_d_128>;
}
defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw", memopv8i16,
int_x86_ssse3_pmul_hr_sw_128>;
}
def : Pat<(X86pshufb VR128:$src, VR128:$mask),
(PSHUFBrr128 VR128:$src, VR128:$mask)>, Requires<[HasSSSE3]>;
def : Pat<(X86pshufb VR128:$src, (bc_v16i8 (memopv2i64 addr:$mask))),
(PSHUFBrm128 VR128:$src, addr:$mask)>, Requires<[HasSSSE3]>;
def : Pat<(X86psignb VR128:$src1, VR128:$src2),
(PSIGNBrr128 VR128:$src1, VR128:$src2)>, Requires<[HasSSSE3]>;
def : Pat<(X86psignw VR128:$src1, VR128:$src2),
(PSIGNWrr128 VR128:$src1, VR128:$src2)>, Requires<[HasSSSE3]>;
def : Pat<(X86psignd VR128:$src1, VR128:$src2),
(PSIGNDrr128 VR128:$src1, VR128:$src2)>, Requires<[HasSSSE3]>;
//===---------------------------------------------------------------------===//
// SSSE3 - Packed Align Instruction Patterns
//===---------------------------------------------------------------------===//
multiclass ssse3_palign<string asm, bit Is2Addr = 1> {
def R128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[]>, OpSize;
def R128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[]>, OpSize;
}
let Predicates = [HasAVX] in
defm VPALIGN : ssse3_palign<"vpalignr", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PALIGN : ssse3_palign<"palignr">;
let AddedComplexity = 5 in {
def : Pat<(v4i32 (palign:$src3 VR128:$src1, VR128:$src2)),
(PALIGNR128rr VR128:$src2, VR128:$src1,
(SHUFFLE_get_palign_imm VR128:$src3))>,
Requires<[HasSSSE3]>;
def : Pat<(v4f32 (palign:$src3 VR128:$src1, VR128:$src2)),
(PALIGNR128rr VR128:$src2, VR128:$src1,
(SHUFFLE_get_palign_imm VR128:$src3))>,
Requires<[HasSSSE3]>;
def : Pat<(v8i16 (palign:$src3 VR128:$src1, VR128:$src2)),
(PALIGNR128rr VR128:$src2, VR128:$src1,
(SHUFFLE_get_palign_imm VR128:$src3))>,
Requires<[HasSSSE3]>;
def : Pat<(v16i8 (palign:$src3 VR128:$src1, VR128:$src2)),
(PALIGNR128rr VR128:$src2, VR128:$src1,
(SHUFFLE_get_palign_imm VR128:$src3))>,
Requires<[HasSSSE3]>;
}
//===---------------------------------------------------------------------===//
// SSSE3 Misc Instructions
//===---------------------------------------------------------------------===//
// Thread synchronization
let usesCustomInserter = 1 in {
def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3),
[(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>;
def MWAIT : PseudoI<(outs), (ins GR32:$src1, GR32:$src2),
[(int_x86_sse3_mwait GR32:$src1, GR32:$src2)]>;
}
let Uses = [EAX, ECX, EDX] in
def MONITORrrr : I<0x01, MRM_C8, (outs), (ins), "monitor", []>, TB,
Requires<[HasSSE3]>;
let Uses = [ECX, EAX] in
def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait", []>, TB,
Requires<[HasSSE3]>;
Generate better code for v8i16 shuffles on SSE2 Generate better code for v16i8 shuffles on SSE2 (avoids stack) Generate pshufb for v8i16 and v16i8 shuffles on SSSE3 where it is fewer uops. Document the shuffle matching logic and add some FIXMEs for later further cleanups. New tests that test the above. Examples: New: _shuf2: pextrw $7, %xmm0, %eax punpcklqdq %xmm1, %xmm0 pshuflw $128, %xmm0, %xmm0 pinsrw $2, %eax, %xmm0 Old: _shuf2: pextrw $2, %xmm0, %eax pextrw $7, %xmm0, %ecx pinsrw $2, %ecx, %xmm0 pinsrw $3, %eax, %xmm0 movd %xmm1, %eax pinsrw $4, %eax, %xmm0 ret ========= New: _shuf4: punpcklqdq %xmm1, %xmm0 pshufb LCPI1_0, %xmm0 Old: _shuf4: pextrw $3, %xmm0, %eax movsd %xmm1, %xmm0 pextrw $3, %xmm1, %ecx pinsrw $4, %ecx, %xmm0 pinsrw $5, %eax, %xmm0 ======== New: _shuf1: pushl %ebx pushl %edi pushl %esi pextrw $1, %xmm0, %eax rolw $8, %ax movd %xmm0, %ecx rolw $8, %cx pextrw $5, %xmm0, %edx pextrw $4, %xmm0, %esi pextrw $3, %xmm0, %edi pextrw $2, %xmm0, %ebx movaps %xmm0, %xmm1 pinsrw $0, %ecx, %xmm1 pinsrw $1, %eax, %xmm1 rolw $8, %bx pinsrw $2, %ebx, %xmm1 rolw $8, %di pinsrw $3, %edi, %xmm1 rolw $8, %si pinsrw $4, %esi, %xmm1 rolw $8, %dx pinsrw $5, %edx, %xmm1 pextrw $7, %xmm0, %eax rolw $8, %ax movaps %xmm1, %xmm0 pinsrw $7, %eax, %xmm0 popl %esi popl %edi popl %ebx ret Old: _shuf1: subl $252, %esp movaps %xmm0, (%esp) movaps %xmm0, 16(%esp) movaps %xmm0, 32(%esp) movaps %xmm0, 48(%esp) movaps %xmm0, 64(%esp) movaps %xmm0, 80(%esp) movaps %xmm0, 96(%esp) movaps %xmm0, 224(%esp) movaps %xmm0, 208(%esp) movaps %xmm0, 192(%esp) movaps %xmm0, 176(%esp) movaps %xmm0, 160(%esp) movaps %xmm0, 144(%esp) movaps %xmm0, 128(%esp) movaps %xmm0, 112(%esp) movzbl 14(%esp), %eax movd %eax, %xmm1 movzbl 22(%esp), %eax movd %eax, %xmm2 punpcklbw %xmm1, %xmm2 movzbl 42(%esp), %eax movd %eax, %xmm1 movzbl 50(%esp), %eax movd %eax, %xmm3 punpcklbw %xmm1, %xmm3 punpcklbw %xmm2, %xmm3 movzbl 77(%esp), %eax movd %eax, %xmm1 movzbl 84(%esp), %eax movd %eax, %xmm2 punpcklbw %xmm1, %xmm2 movzbl 104(%esp), %eax movd %eax, %xmm1 punpcklbw %xmm1, %xmm0 punpcklbw %xmm2, %xmm0 movaps %xmm0, %xmm1 punpcklbw %xmm3, %xmm1 movzbl 127(%esp), %eax movd %eax, %xmm0 movzbl 135(%esp), %eax movd %eax, %xmm2 punpcklbw %xmm0, %xmm2 movzbl 155(%esp), %eax movd %eax, %xmm0 movzbl 163(%esp), %eax movd %eax, %xmm3 punpcklbw %xmm0, %xmm3 punpcklbw %xmm2, %xmm3 movzbl 188(%esp), %eax movd %eax, %xmm0 movzbl 197(%esp), %eax movd %eax, %xmm2 punpcklbw %xmm0, %xmm2 movzbl 217(%esp), %eax movd %eax, %xmm4 movzbl 225(%esp), %eax movd %eax, %xmm0 punpcklbw %xmm4, %xmm0 punpcklbw %xmm2, %xmm0 punpcklbw %xmm3, %xmm0 punpcklbw %xmm1, %xmm0 addl $252, %esp ret git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65311 91177308-0d34-0410-b5e6-96231b3b80d8
2009-02-23 08:49:38 +00:00
def : InstAlias<"mwait %eax, %ecx", (MWAITrr)>, Requires<[In32BitMode]>;
def : InstAlias<"mwait %rax, %rcx", (MWAITrr)>, Requires<[In64BitMode]>;
def : InstAlias<"monitor %eax, %ecx, %edx", (MONITORrrr)>,
Requires<[In32BitMode]>;
def : InstAlias<"monitor %rax, %rcx, %rdx", (MONITORrrr)>,
Requires<[In64BitMode]>;
//===---------------------------------------------------------------------===//
// Non-Instruction Patterns
//===---------------------------------------------------------------------===//
// extload f32 -> f64. This matches load+fextend because we have a hack in
// the isel (PreprocessForFPConvert) that can introduce loads after dag
// combine.
Significantly simplify and improve handling of FP function results on x86-32. This case returns the value in ST(0) and then has to convert it to an SSE register. This causes significant codegen ugliness in some cases. For example in the trivial fp-stack-direct-ret.ll testcase we used to generate: _bar: subl $28, %esp call L_foo$stub fstpl 16(%esp) movsd 16(%esp), %xmm0 movsd %xmm0, 8(%esp) fldl 8(%esp) addl $28, %esp ret because we move the result of foo() into an XMM register, then have to move it back for the return of bar. Instead of hacking ever-more special cases into the call result lowering code we take a much simpler approach: on x86-32, fp return is modeled as always returning into an f80 register which is then truncated to f32 or f64 as needed. Similarly for a result, we model it as an extension to f80 + return. This exposes the truncate and extensions to the dag combiner, allowing target independent code to hack on them, eliminating them in this case. This gives us this code for the example above: _bar: subl $12, %esp call L_foo$stub addl $12, %esp ret The nasty aspect of this is that these conversions are not legal, but we want the second pass of dag combiner (post-legalize) to be able to hack on them. To handle this, we lie to legalize and say they are legal, then custom expand them on entry to the isel pass (PreprocessForFPConvert). This is gross, but less gross than the code it is replacing :) This also allows us to generate better code in several other cases. For example on fp-stack-ret-conv.ll, we now generate: _test: subl $12, %esp call L_foo$stub fstps 8(%esp) movl 16(%esp), %eax cvtss2sd 8(%esp), %xmm0 movsd %xmm0, (%eax) addl $12, %esp ret where before we produced (incidentally, the old bad code is identical to what gcc produces): _test: subl $12, %esp call L_foo$stub fstpl (%esp) cvtsd2ss (%esp), %xmm0 cvtss2sd %xmm0, %xmm0 movl 16(%esp), %eax movsd %xmm0, (%eax) addl $12, %esp ret Note that we generate slightly worse code on pr1505b.ll due to a scheduling deficiency that is unrelated to this patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46307 91177308-0d34-0410-b5e6-96231b3b80d8
2008-01-24 08:07:48 +00:00
// Since these loads aren't folded into the fextend, we have to match it
// explicitly here.
let Predicates = [HasSSE2] in
def : Pat<(fextend (loadf32 addr:$src)),
(CVTSS2SDrm addr:$src)>;
// bit_convert
let Predicates = [HasXMMInt] in {
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
}
let Predicates = [HasAVX] in {
def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>;
}
// Move scalar to XMM zero-extended
// movd to XMM register zero-extends
let AddedComplexity = 15 in {
// Zeroing a VR128 then do a MOVS{S|D} to the lower bits.
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
(MOVSDrr (v2f64 (V_SET0PS)), FR64:$src)>;
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
(MOVSSrr (v4f32 (V_SET0PS)), FR32:$src)>;
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
(MOVSSrr (v4f32 (V_SET0PS)),
(f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss)))>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
(MOVSSrr (v4i32 (V_SET0PI)),
(EXTRACT_SUBREG (v4i32 VR128:$src), sub_ss))>;
}
// Splat v2f64 / v2i64
let AddedComplexity = 10 in {
def : Pat<(splat_lo (v2f64 VR128:$src), (undef)),
(UNPCKLPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(unpckh (v2f64 VR128:$src), (undef)),
(UNPCKHPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(splat_lo (v2i64 VR128:$src), (undef)),
(PUNPCKLQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(unpckh (v2i64 VR128:$src), (undef)),
(PUNPCKHQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
}
// Special unary SHUFPSrri case.
def : Pat<(v4f32 (pshufd:$src3 VR128:$src1, (undef))),
(SHUFPSrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>;
let AddedComplexity = 5 in
def : Pat<(v4f32 (pshufd:$src2 VR128:$src1, (undef))),
(PSHUFDri VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[HasSSE2]>;
// Special unary SHUFPDrri case.
def : Pat<(v2i64 (pshufd:$src3 VR128:$src1, (undef))),
(SHUFPDrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Special unary SHUFPDrri case.
def : Pat<(v2f64 (pshufd:$src3 VR128:$src1, (undef))),
(SHUFPDrri VR128:$src1, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Unary v4f32 shuffle with PSHUF* in order to fold a load.
def : Pat<(pshufd:$src2 (bc_v4i32 (memopv4f32 addr:$src1)), (undef)),
(PSHUFDmi addr:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[HasSSE2]>;
// Special binary v4i32 shuffle cases with SHUFPS.
def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (v4i32 VR128:$src2))),
(SHUFPSrri VR128:$src1, VR128:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)))),
(SHUFPSrmi VR128:$src1, addr:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// Special binary v2i64 shuffle cases using SHUFPDrri.
def : Pat<(v2i64 (shufp:$src3 VR128:$src1, VR128:$src2)),
(SHUFPDrri VR128:$src1, VR128:$src2,
(SHUFFLE_get_shuf_imm VR128:$src3))>,
Requires<[HasSSE2]>;
// vector_shuffle v1, <undef>, <0, 0, 1, 1, ...>
let AddedComplexity = 15 in {
def : Pat<(v4i32 (unpckl_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
def : Pat<(v4f32 (unpckl_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
}
let AddedComplexity = 10 in {
def : Pat<(v4f32 (unpckl_undef VR128:$src, (undef))),
(UNPCKLPSrr VR128:$src, VR128:$src)>;
def : Pat<(v16i8 (unpckl_undef VR128:$src, (undef))),
(PUNPCKLBWrr VR128:$src, VR128:$src)>;
def : Pat<(v8i16 (unpckl_undef VR128:$src, (undef))),
(PUNPCKLWDrr VR128:$src, VR128:$src)>;
def : Pat<(v4i32 (unpckl_undef VR128:$src, (undef))),
(PUNPCKLDQrr VR128:$src, VR128:$src)>;
}
// vector_shuffle v1, <undef>, <2, 2, 3, 3, ...>
let AddedComplexity = 15 in {
def : Pat<(v4i32 (unpckh_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
def : Pat<(v4f32 (unpckh_undef:$src2 VR128:$src, (undef))),
(PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>,
Requires<[OptForSpeed, HasSSE2]>;
}
let AddedComplexity = 10 in {
def : Pat<(v4f32 (unpckh_undef VR128:$src, (undef))),
(UNPCKHPSrr VR128:$src, VR128:$src)>;
def : Pat<(v16i8 (unpckh_undef VR128:$src, (undef))),
(PUNPCKHBWrr VR128:$src, VR128:$src)>;
def : Pat<(v8i16 (unpckh_undef VR128:$src, (undef))),
(PUNPCKHWDrr VR128:$src, VR128:$src)>;
def : Pat<(v4i32 (unpckh_undef VR128:$src, (undef))),
(PUNPCKHDQrr VR128:$src, VR128:$src)>;
}
let AddedComplexity = 20 in {
// vector_shuffle v1, v2 <0, 1, 4, 5> using MOVLHPS
def : Pat<(v4i32 (movlhps VR128:$src1, VR128:$src2)),
(MOVLHPSrr VR128:$src1, VR128:$src2)>;
// vector_shuffle v1, v2 <6, 7, 2, 3> using MOVHLPS
def : Pat<(v4i32 (movhlps VR128:$src1, VR128:$src2)),
(MOVHLPSrr VR128:$src1, VR128:$src2)>;
// vector_shuffle v1, undef <2, ?, ?, ?> using MOVHLPS
def : Pat<(v4f32 (movhlps_undef VR128:$src1, (undef))),
(MOVHLPSrr VR128:$src1, VR128:$src1)>;
def : Pat<(v4i32 (movhlps_undef VR128:$src1, (undef))),
(MOVHLPSrr VR128:$src1, VR128:$src1)>;
}
let AddedComplexity = 20 in {
// vector_shuffle v1, (load v2) <4, 5, 2, 3> using MOVLPS
def : Pat<(v4f32 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v2f64 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (movlp VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
}
// (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS
def : Pat<(store (v4f32 (movlp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2f64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v4i32 (movlp (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)),
addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2i64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>;
let AddedComplexity = 15 in {
// Setting the lowest element in the vector.
def : Pat<(v4i32 (movl VR128:$src1, VR128:$src2)),
(MOVSSrr (v4i32 VR128:$src1),
(EXTRACT_SUBREG (v4i32 VR128:$src2), sub_ss))>;
def : Pat<(v2i64 (movl VR128:$src1, VR128:$src2)),
(MOVSDrr (v2i64 VR128:$src1),
(EXTRACT_SUBREG (v2i64 VR128:$src2), sub_sd))>;
// vector_shuffle v1, v2 <4, 5, 2, 3> using movsd
def : Pat<(v4f32 (movlp VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (EXTRACT_SUBREG VR128:$src2, sub_sd))>,
Requires<[HasSSE2]>;
def : Pat<(v4i32 (movlp VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (EXTRACT_SUBREG VR128:$src2, sub_sd))>,
Requires<[HasSSE2]>;
}
// vector_shuffle v1, v2 <4, 5, 2, 3> using SHUFPSrri (we prefer movsd, but
// fall back to this for SSE1)
def : Pat<(v4f32 (movlp:$src3 VR128:$src1, (v4f32 VR128:$src2))),
(SHUFPSrri VR128:$src2, VR128:$src1,
(SHUFFLE_get_shuf_imm VR128:$src3))>;
// Set lowest element and zero upper elements.
def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
(MOVZPQILo2PQIrr VR128:$src)>, Requires<[HasSSE2]>;
// vector -> vector casts
def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
(Int_CVTDQ2PSrr VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
(CVTTPS2DQrr VR128:$src)>, Requires<[HasSSE2]>;
// Use movaps / movups for SSE integer load / store (one byte shorter).
let Predicates = [HasSSE1] in {
def : Pat<(alignedloadv4i32 addr:$src),
(MOVAPSrm addr:$src)>;
def : Pat<(loadv4i32 addr:$src),
(MOVUPSrm addr:$src)>;
def : Pat<(alignedloadv2i64 addr:$src),
(MOVAPSrm addr:$src)>;
def : Pat<(loadv2i64 addr:$src),
(MOVUPSrm addr:$src)>;
def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
(MOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v2i64 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(MOVUPSmr addr:$dst, VR128:$src)>;
}
// Use vmovaps/vmovups for AVX 128-bit integer load/store (one byte shorter).
let Predicates = [HasAVX] in {
def : Pat<(alignedloadv4i32 addr:$src),
(VMOVAPSrm addr:$src)>;
def : Pat<(loadv4i32 addr:$src),
(VMOVUPSrm addr:$src)>;
def : Pat<(alignedloadv2i64 addr:$src),
(VMOVAPSrm addr:$src)>;
def : Pat<(loadv2i64 addr:$src),
(VMOVUPSrm addr:$src)>;
def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
(VMOVAPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v2i64 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(VMOVUPSmr addr:$dst, VR128:$src)>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Packed Move with Sign/Zero Extend
//===----------------------------------------------------------------------===//
multiclass SS41I_binop_rm_int8<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>, OpSize;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>,
OpSize;
}
let Predicates = [HasAVX] in {
defm VPMOVSXBW : SS41I_binop_rm_int8<0x20, "vpmovsxbw", int_x86_sse41_pmovsxbw>,
VEX;
defm VPMOVSXWD : SS41I_binop_rm_int8<0x23, "vpmovsxwd", int_x86_sse41_pmovsxwd>,
VEX;
defm VPMOVSXDQ : SS41I_binop_rm_int8<0x25, "vpmovsxdq", int_x86_sse41_pmovsxdq>,
VEX;
defm VPMOVZXBW : SS41I_binop_rm_int8<0x30, "vpmovzxbw", int_x86_sse41_pmovzxbw>,
VEX;
defm VPMOVZXWD : SS41I_binop_rm_int8<0x33, "vpmovzxwd", int_x86_sse41_pmovzxwd>,
VEX;
defm VPMOVZXDQ : SS41I_binop_rm_int8<0x35, "vpmovzxdq", int_x86_sse41_pmovzxdq>,
VEX;
}
defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw>;
defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd>;
defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq>;
defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw>;
defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd>;
defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq>;
// Common patterns involving scalar load.
def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)),
(PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)),
(PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)),
(PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)),
(PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)),
(PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)),
(PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)),
(PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)),
(PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)),
(PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)),
(PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)),
(PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)),
(PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>;
multiclass SS41I_binop_rm_int4<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>, OpSize;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId (bitconvert (v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>,
OpSize;
}
let Predicates = [HasAVX] in {
defm VPMOVSXBD : SS41I_binop_rm_int4<0x21, "vpmovsxbd", int_x86_sse41_pmovsxbd>,
VEX;
defm VPMOVSXWQ : SS41I_binop_rm_int4<0x24, "vpmovsxwq", int_x86_sse41_pmovsxwq>,
VEX;
defm VPMOVZXBD : SS41I_binop_rm_int4<0x31, "vpmovzxbd", int_x86_sse41_pmovzxbd>,
VEX;
defm VPMOVZXWQ : SS41I_binop_rm_int4<0x34, "vpmovzxwq", int_x86_sse41_pmovzxwq>,
VEX;
}
defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd>;
defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq>;
defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd>;
defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq>;
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)),
(PMOVSXBDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)),
(PMOVSXWQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)),
(PMOVZXBDrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)),
(PMOVZXWQrm addr:$src)>, Requires<[HasSSE41]>;
multiclass SS41I_binop_rm_int2<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>, OpSize;
// Expecting a i16 load any extended to i32 value.
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), (ins i16mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId (bitconvert
(v4i32 (scalar_to_vector (loadi16_anyext addr:$src))))))]>,
OpSize;
}
let Predicates = [HasAVX] in {
defm VPMOVSXBQ : SS41I_binop_rm_int2<0x22, "vpmovsxbq", int_x86_sse41_pmovsxbq>,
VEX;
defm VPMOVZXBQ : SS41I_binop_rm_int2<0x32, "vpmovzxbq", int_x86_sse41_pmovzxbq>,
VEX;
}
defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq>;
defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq>;
// Common patterns involving scalar load
def : Pat<(int_x86_sse41_pmovsxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVSXBQrm addr:$src)>, Requires<[HasSSE41]>;
def : Pat<(int_x86_sse41_pmovzxbq
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 addr:$src))))))),
(PMOVZXBQrm addr:$src)>, Requires<[HasSSE41]>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Extract Instructions
//===----------------------------------------------------------------------===//
/// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem
multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst, (X86pextrb (v16i8 VR128:$src1), imm:$src2))]>,
OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i8mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// FIXME:
// There's an AssertZext in the way of writing the store pattern
// (store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), addr:$dst)
}
let Predicates = [HasAVX] in {
defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX;
def VPEXTRBrr64 : SS4AIi8<0x14, MRMDestReg, (outs GR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
"vpextrb\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, OpSize, VEX;
}
defm PEXTRB : SS41I_extract8<0x14, "pextrb">;
/// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination
multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i16mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// FIXME:
// There's an AssertZext in the way of writing the store pattern
// (store (i16 (trunc (X86pextrw (v16i8 VR128:$src1), imm:$src2))), addr:$dst)
}
let Predicates = [HasAVX] in
defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX;
defm PEXTRW : SS41I_extract16<0x15, "pextrw">;
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (v4i32 VR128:$src1), imm:$src2))]>, OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i32mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v4i32 VR128:$src1), imm:$src2),
addr:$dst)]>, OpSize;
}
let Predicates = [HasAVX] in
defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX;
defm PEXTRD : SS41I_extract32<0x16, "pextrd">;
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR64:$dst,
(extractelt (v2i64 VR128:$src1), imm:$src2))]>, OpSize, REX_W;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i64mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v2i64 VR128:$src1), imm:$src2),
addr:$dst)]>, OpSize, REX_W;
}
let Predicates = [HasAVX] in
defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W;
defm PEXTRQ : SS41I_extract64<0x16, "pextrq">;
/// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory
/// destination
multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR32:$dst,
(extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))]>,
OpSize;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins f32mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2),
addr:$dst)]>, OpSize;
}
let Predicates = [HasAVX] in {
defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX;
def VEXTRACTPSrr64 : SS4AIi8<0x17, MRMDestReg, (outs GR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
"vextractps \t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, OpSize, VEX;
}
defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">;
// Also match an EXTRACTPS store when the store is done as f32 instead of i32.
def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
imm:$src2))),
addr:$dst),
(EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
Requires<[HasSSE41]>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Insert Instructions
//===----------------------------------------------------------------------===//
multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, GR32:$src2, imm:$src3))]>, OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i8mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86pinsrb VR128:$src1, (extloadi8 addr:$src2),
imm:$src3))]>, OpSize;
}
let Predicates = [HasAVX] in
defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PINSRB : SS41I_insert8<0x20, "pinsrb">;
multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR32:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>,
OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i32mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2),
imm:$src3)))]>, OpSize;
}
let Predicates = [HasAVX] in
defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PINSRD : SS41I_insert32<0x22, "pinsrd">;
multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i64mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
imm:$src3)))]>, OpSize;
}
let Predicates = [HasAVX] in
defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W;
let Constraints = "$src1 = $dst" in
defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W;
// insertps has a few different modes, there's the first two here below which
// are optimized inserts that won't zero arbitrary elements in the destination
// vector. The next one matches the intrinsic and could zero arbitrary elements
// in the target vector.
multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86insrtps VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f32mem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(asm,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(X86insrtps VR128:$src1,
(v4f32 (scalar_to_vector (loadf32 addr:$src2))),
imm:$src3))]>, OpSize;
}
let Constraints = "$src1 = $dst" in
defm INSERTPS : SS41I_insertf32<0x21, "insertps">;
let Predicates = [HasAVX] in
defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, VEX_4V;
def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3),
(VINSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>,
Requires<[HasAVX]>;
def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3),
(INSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>,
Requires<[HasSSE41]>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Round Instructions
//===----------------------------------------------------------------------===//
multiclass sse41_fp_unop_rm<bits<8> opcps, bits<8> opcpd, string OpcodeStr,
X86MemOperand x86memop, RegisterClass RC,
PatFrag mem_frag32, PatFrag mem_frag64,
Intrinsic V4F32Int, Intrinsic V2F64Int> {
// Intrinsic operation, reg.
// Vector intrinsic operation, reg
def PSr : SS4AIi8<opcps, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (V4F32Int RC:$src1, imm:$src2))]>,
OpSize;
// Vector intrinsic operation, mem
def PSm : Ii8<opcps, MRMSrcMem,
(outs RC:$dst), (ins f256mem:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(V4F32Int (mem_frag32 addr:$src1),imm:$src2))]>,
TA, OpSize,
Requires<[HasSSE41]>;
// Vector intrinsic operation, reg
def PDr : SS4AIi8<opcpd, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (V2F64Int RC:$src1, imm:$src2))]>,
OpSize;
// Vector intrinsic operation, mem
def PDm : SS4AIi8<opcpd, MRMSrcMem,
(outs RC:$dst), (ins f256mem:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst,
(V2F64Int (mem_frag64 addr:$src1),imm:$src2))]>,
OpSize;
}
multiclass sse41_fp_unop_rm_avx_p<bits<8> opcps, bits<8> opcpd,
RegisterClass RC, X86MemOperand x86memop, string OpcodeStr> {
// Intrinsic operation, reg.
// Vector intrinsic operation, reg
def PSr_AVX : SS4AIi8<opcps, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// Vector intrinsic operation, mem
def PSm_AVX : Ii8<opcps, MRMSrcMem,
(outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"ps\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, TA, OpSize, Requires<[HasSSE41]>;
// Vector intrinsic operation, reg
def PDr_AVX : SS4AIi8<opcpd, MRMSrcReg,
(outs RC:$dst), (ins RC:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
// Vector intrinsic operation, mem
def PDm_AVX : SS4AIi8<opcpd, MRMSrcMem,
(outs RC:$dst), (ins x86memop:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"pd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>, OpSize;
}
multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd,
string OpcodeStr,
Intrinsic F32Int,
Intrinsic F64Int, bit Is2Addr = 1> {
// Intrinsic operation, reg.
def SSr : SS4AIi8<opcss, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, mem.
def SSm : SS4AIi8<opcss, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(F32Int VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, reg.
def SDr : SS4AIi8<opcsd, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2, imm:$src3))]>,
OpSize;
// Intrinsic operation, mem.
def SDm : SS4AIi8<opcsd, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set VR128:$dst,
(F64Int VR128:$src1, sse_load_f64:$src2, imm:$src3))]>,
OpSize;
}
multiclass sse41_fp_binop_rm_avx_s<bits<8> opcss, bits<8> opcsd,
string OpcodeStr> {
// Intrinsic operation, reg.
def SSr_AVX : SS4AIi8<opcss, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, OpSize;
// Intrinsic operation, mem.
def SSm_AVX : SS4AIi8<opcss, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, OpSize;
// Intrinsic operation, reg.
def SDr_AVX : SS4AIi8<opcsd, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, OpSize;
// Intrinsic operation, mem.
def SDm_AVX : SS4AIi8<opcsd, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[]>, OpSize;
}
// FP round - roundss, roundps, roundsd, roundpd
let Predicates = [HasAVX] in {
// Intrinsic form
defm VROUND : sse41_fp_unop_rm<0x08, 0x09, "vround", f128mem, VR128,
memopv4f32, memopv2f64,
int_x86_sse41_round_ps,
int_x86_sse41_round_pd>, VEX;
defm VROUNDY : sse41_fp_unop_rm<0x08, 0x09, "vround", f256mem, VR256,
memopv8f32, memopv4f64,
int_x86_avx_round_ps_256,
int_x86_avx_round_pd_256>, VEX;
defm VROUND : sse41_fp_binop_rm<0x0A, 0x0B, "vround",
int_x86_sse41_round_ss,
int_x86_sse41_round_sd, 0>, VEX_4V;
// Instructions for the assembler
defm VROUND : sse41_fp_unop_rm_avx_p<0x08, 0x09, VR128, f128mem, "vround">,
VEX;
defm VROUNDY : sse41_fp_unop_rm_avx_p<0x08, 0x09, VR256, f256mem, "vround">,
VEX;
defm VROUND : sse41_fp_binop_rm_avx_s<0x0A, 0x0B, "vround">, VEX_4V;
}
defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", f128mem, VR128,
memopv4f32, memopv2f64,
int_x86_sse41_round_ps, int_x86_sse41_round_pd>;
let Constraints = "$src1 = $dst" in
defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round",
int_x86_sse41_round_ss, int_x86_sse41_round_sd>;
//===----------------------------------------------------------------------===//
// SSE4.1 - Packed Bit Test
//===----------------------------------------------------------------------===//
// ptest instruction we'll lower to this in X86ISelLowering primarily from
// the intel intrinsic that corresponds to this.
let Defs = [EFLAGS], Predicates = [HasAVX] in {
def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (v4f32 VR128:$src2)))]>,
OpSize, VEX;
def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS,(X86ptest VR128:$src1, (memopv4f32 addr:$src2)))]>,
OpSize, VEX;
def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>,
OpSize, VEX;
def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2),
"vptest\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS,(X86ptest VR256:$src1, (memopv4i64 addr:$src2)))]>,
OpSize, VEX;
}
let Defs = [EFLAGS] in {
def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
"ptest \t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (v4f32 VR128:$src2)))]>,
OpSize;
def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
"ptest \t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86ptest VR128:$src1, (memopv4f32 addr:$src2)))]>,
OpSize;
}
// The bit test instructions below are AVX only
multiclass avx_bittest<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, PatFrag mem_frag, ValueType vt> {
def rr : SS48I<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (X86testp RC:$src1, (vt RC:$src2)))]>, OpSize, VEX;
def rm : SS48I<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (X86testp RC:$src1, (mem_frag addr:$src2)))]>,
OpSize, VEX;
}
let Defs = [EFLAGS], Predicates = [HasAVX] in {
defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, memopv4f32, v4f32>;
defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, memopv8f32, v8f32>;
defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, memopv2f64, v2f64>;
defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, memopv4f64, v4f64>;
}
//===----------------------------------------------------------------------===//
// SSE4.1 - Misc Instructions
//===----------------------------------------------------------------------===//
def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctpop GR16:$src))]>, OpSize, XS;
def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"popcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctpop (loadi16 addr:$src)))]>, OpSize, XS;
def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctpop GR32:$src))]>, XS;
def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"popcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctpop (loadi32 addr:$src)))]>, XS;
def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"popcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctpop GR64:$src))]>, XS;
def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"popcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctpop (loadi64 addr:$src)))]>, XS;
// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16.
multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr,
Intrinsic IntId128> {
def rr128 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId128 VR128:$src))]>, OpSize;
def rm128 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set VR128:$dst,
(IntId128
(bitconvert (memopv8i16 addr:$src))))]>, OpSize;
}
let Predicates = [HasAVX] in
defm VPHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "vphminposuw",
int_x86_sse41_phminposuw>, VEX;
defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw",
int_x86_sse41_phminposuw>;
/// SS41I_binop_rm_int - Simple SSE 4.1 binary operator
multiclass SS41I_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, OpSize;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
}
let Predicates = [HasAVX] in {
let isCommutable = 0 in
defm VPACKUSDW : SS41I_binop_rm_int<0x2B, "vpackusdw", int_x86_sse41_packusdw,
0>, VEX_4V;
defm VPCMPEQQ : SS41I_binop_rm_int<0x29, "vpcmpeqq", int_x86_sse41_pcmpeqq,
0>, VEX_4V;
defm VPMINSB : SS41I_binop_rm_int<0x38, "vpminsb", int_x86_sse41_pminsb,
0>, VEX_4V;
defm VPMINSD : SS41I_binop_rm_int<0x39, "vpminsd", int_x86_sse41_pminsd,
0>, VEX_4V;
defm VPMINUD : SS41I_binop_rm_int<0x3B, "vpminud", int_x86_sse41_pminud,
0>, VEX_4V;
defm VPMINUW : SS41I_binop_rm_int<0x3A, "vpminuw", int_x86_sse41_pminuw,
0>, VEX_4V;
defm VPMAXSB : SS41I_binop_rm_int<0x3C, "vpmaxsb", int_x86_sse41_pmaxsb,
0>, VEX_4V;
defm VPMAXSD : SS41I_binop_rm_int<0x3D, "vpmaxsd", int_x86_sse41_pmaxsd,
0>, VEX_4V;
defm VPMAXUD : SS41I_binop_rm_int<0x3F, "vpmaxud", int_x86_sse41_pmaxud,
0>, VEX_4V;
defm VPMAXUW : SS41I_binop_rm_int<0x3E, "vpmaxuw", int_x86_sse41_pmaxuw,
0>, VEX_4V;
defm VPMULDQ : SS41I_binop_rm_int<0x28, "vpmuldq", int_x86_sse41_pmuldq,
0>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
let isCommutable = 0 in
defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", int_x86_sse41_packusdw>;
defm PCMPEQQ : SS41I_binop_rm_int<0x29, "pcmpeqq", int_x86_sse41_pcmpeqq>;
defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb", int_x86_sse41_pminsb>;
defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd", int_x86_sse41_pminsd>;
defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud", int_x86_sse41_pminud>;
defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw", int_x86_sse41_pminuw>;
defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb", int_x86_sse41_pmaxsb>;
defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd", int_x86_sse41_pmaxsd>;
defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud", int_x86_sse41_pmaxud>;
defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw", int_x86_sse41_pmaxuw>;
defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq>;
}
def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, VR128:$src2)),
(PCMPEQQrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, (memop addr:$src2))),
(PCMPEQQrm VR128:$src1, addr:$src2)>;
/// SS48I_binop_rm - Simple SSE41 binary operator.
multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, bit Is2Addr = 1> {
let isCommutable = 1 in
def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]>,
OpSize;
def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (OpNode VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2))))]>,
OpSize;
}
let Predicates = [HasAVX] in
defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, 0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32>;
/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate
multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId, RegisterClass RC, PatFrag memop_frag,
X86MemOperand x86memop, bit Is2Addr = 1> {
let isCommutable = 1 in
def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))]>,
OpSize;
def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, i32i8imm:$src3),
!if(Is2Addr,
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
[(set RC:$dst,
(IntId RC:$src1,
(bitconvert (memop_frag addr:$src2)), imm:$src3))]>,
OpSize;
}
let Predicates = [HasAVX] in {
let isCommutable = 0 in {
defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps,
VR128, memopv16i8, i128mem, 0>, VEX_4V;
defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd,
VR128, memopv16i8, i128mem, 0>, VEX_4V;
defm VBLENDPSY : SS41I_binop_rmi_int<0x0C, "vblendps",
int_x86_avx_blend_ps_256, VR256, memopv32i8, i256mem, 0>, VEX_4V;
defm VBLENDPDY : SS41I_binop_rmi_int<0x0D, "vblendpd",
int_x86_avx_blend_pd_256, VR256, memopv32i8, i256mem, 0>, VEX_4V;
defm VPBLENDW : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_sse41_pblendw,
VR128, memopv16i8, i128mem, 0>, VEX_4V;
defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
VR128, memopv16i8, i128mem, 0>, VEX_4V;
}
defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps,
VR128, memopv16i8, i128mem, 0>, VEX_4V;
defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd,
VR128, memopv16i8, i128mem, 0>, VEX_4V;
defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256,
VR256, memopv32i8, i256mem, 0>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
let isCommutable = 0 in {
defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps,
VR128, memopv16i8, i128mem>;
defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd,
VR128, memopv16i8, i128mem>;
defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw,
VR128, memopv16i8, i128mem>;
defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
VR128, memopv16i8, i128mem>;
}
defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps,
VR128, memopv16i8, i128mem>;
defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd,
VR128, memopv16i8, i128mem>;
}
/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators
let Predicates = [HasAVX] in {
multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr,
RegisterClass RC, X86MemOperand x86memop,
PatFrag mem_frag, Intrinsic IntId> {
def rr : I<opc, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))],
SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM;
def rm : I<opc, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop:$src2, RC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
[(set RC:$dst,
(IntId RC:$src1, (bitconvert (mem_frag addr:$src2)),
RC:$src3))],
SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM;
}
}
defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, i128mem,
memopv16i8, int_x86_sse41_blendvpd>;
defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, i128mem,
memopv16i8, int_x86_sse41_blendvps>;
defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem,
memopv16i8, int_x86_sse41_pblendvb>;
defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, i256mem,
memopv32i8, int_x86_avx_blendv_pd_256>;
defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, i256mem,
memopv32i8, int_x86_avx_blendv_ps_256>;
/// SS41I_ternary_int - SSE 4.1 ternary operator
let Uses = [XMM0], Constraints = "$src1 = $dst" in {
multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, Intrinsic IntId> {
def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>,
OpSize;
def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId VR128:$src1,
(bitconvert (memopv16i8 addr:$src2)), XMM0))]>, OpSize;
}
}
defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>;
defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>;
defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>;
def : Pat<(X86pblendv VR128:$src1, VR128:$src2, XMM0),
(PBLENDVBrr0 VR128:$src1, VR128:$src2)>;
let Predicates = [HasAVX] in
def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"vmovntdqa\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>,
OpSize, VEX;
def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
"movntdqa\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>,
OpSize;
//===----------------------------------------------------------------------===//
// SSE4.2 - Compare Instructions
//===----------------------------------------------------------------------===//
/// SS42I_binop_rm_int - Simple SSE 4.2 binary operator
multiclass SS42I_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Is2Addr = 1> {
def rr : SS428I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize;
def rm : SS428I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
}
let Predicates = [HasAVX] in
defm VPCMPGTQ : SS42I_binop_rm_int<0x37, "vpcmpgtq", int_x86_sse42_pcmpgtq,
0>, VEX_4V;
let Constraints = "$src1 = $dst" in
defm PCMPGTQ : SS42I_binop_rm_int<0x37, "pcmpgtq", int_x86_sse42_pcmpgtq>;
def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, VR128:$src2)),
(PCMPGTQrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, (memop addr:$src2))),
(PCMPGTQrm VR128:$src1, addr:$src2)>;
//===----------------------------------------------------------------------===//
// SSE4.2 - String/text Processing Instructions
//===----------------------------------------------------------------------===//
// Packed Compare Implicit Length Strings, Return Mask
multiclass pseudo_pcmpistrm<string asm> {
def REG : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
[(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2,
imm:$src3))]>;
def MEM : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
[(set VR128:$dst, (int_x86_sse42_pcmpistrm128
VR128:$src1, (load addr:$src2), imm:$src3))]>;
}
let Defs = [EFLAGS], usesCustomInserter = 1 in {
defm PCMPISTRM128 : pseudo_pcmpistrm<"#PCMPISTRM128">, Requires<[HasSSE42]>;
defm VPCMPISTRM128 : pseudo_pcmpistrm<"#VPCMPISTRM128">, Requires<[HasAVX]>;
}
let Defs = [XMM0, EFLAGS], Predicates = [HasAVX] in {
def VPCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"vpcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize, VEX;
def VPCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"vpcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize, VEX;
}
let Defs = [XMM0, EFLAGS] in {
def PCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize;
def PCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize;
}
// Packed Compare Explicit Length Strings, Return Mask
multiclass pseudo_pcmpestrm<string asm> {
def REG : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
[(set VR128:$dst, (int_x86_sse42_pcmpestrm128
VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>;
def MEM : PseudoI<(outs VR128:$dst),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
[(set VR128:$dst, (int_x86_sse42_pcmpestrm128
VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5))]>;
}
let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in {
defm PCMPESTRM128 : pseudo_pcmpestrm<"#PCMPESTRM128">, Requires<[HasSSE42]>;
defm VPCMPESTRM128 : pseudo_pcmpestrm<"#VPCMPESTRM128">, Requires<[HasAVX]>;
}
let Predicates = [HasAVX],
Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in {
def VPCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
"vpcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize, VEX;
def VPCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
"vpcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize, VEX;
}
let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in {
def PCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
"pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize;
def PCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
"pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize;
}
// Packed Compare Implicit Length Strings, Return Index
let Defs = [ECX, EFLAGS] in {
multiclass SS42AI_pcmpistri<Intrinsic IntId128, string asm = "pcmpistri"> {
def rr : SS42AI<0x63, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[(set ECX, (IntId128 VR128:$src1, VR128:$src2, imm:$src3)),
(implicit EFLAGS)]>, OpSize;
def rm : SS42AI<0x63, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
!strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
[(set ECX, (IntId128 VR128:$src1, (load addr:$src2), imm:$src3)),
(implicit EFLAGS)]>, OpSize;
}
}
let Predicates = [HasAVX] in {
defm VPCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128, "vpcmpistri">,
VEX;
defm VPCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128, "vpcmpistri">,
VEX;
defm VPCMPISTRIC : SS42AI_pcmpistri<int_x86_sse42_pcmpistric128, "vpcmpistri">,
VEX;
defm VPCMPISTRIO : SS42AI_pcmpistri<int_x86_sse42_pcmpistrio128, "vpcmpistri">,
VEX;
defm VPCMPISTRIS : SS42AI_pcmpistri<int_x86_sse42_pcmpistris128, "vpcmpistri">,
VEX;
defm VPCMPISTRIZ : SS42AI_pcmpistri<int_x86_sse42_pcmpistriz128, "vpcmpistri">,
VEX;
}
defm PCMPISTRI : SS42AI_pcmpistri<int_x86_sse42_pcmpistri128>;
defm PCMPISTRIA : SS42AI_pcmpistri<int_x86_sse42_pcmpistria128>;
defm PCMPISTRIC : SS42AI_pcmpistri<int_x86_sse42_pcmpistric128>;
defm PCMPISTRIO : SS42AI_pcmpistri<int_x86_sse42_pcmpistrio128>;
defm PCMPISTRIS : SS42AI_pcmpistri<int_x86_sse42_pcmpistris128>;
defm PCMPISTRIZ : SS42AI_pcmpistri<int_x86_sse42_pcmpistriz128>;
// Packed Compare Explicit Length Strings, Return Index
let Defs = [ECX, EFLAGS], Uses = [EAX, EDX] in {
multiclass SS42AI_pcmpestri<Intrinsic IntId128, string asm = "pcmpestri"> {
def rr : SS42AI<0x61, MRMSrcReg, (outs),
(ins VR128:$src1, VR128:$src3, i8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[(set ECX, (IntId128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5)),
(implicit EFLAGS)]>, OpSize;
def rm : SS42AI<0x61, MRMSrcMem, (outs),
(ins VR128:$src1, i128mem:$src3, i8imm:$src5),
!strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
[(set ECX,
(IntId128 VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5)),
(implicit EFLAGS)]>, OpSize;
}
}
let Predicates = [HasAVX] in {
defm VPCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128, "vpcmpestri">,
VEX;
defm VPCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128, "vpcmpestri">,
VEX;
defm VPCMPESTRIC : SS42AI_pcmpestri<int_x86_sse42_pcmpestric128, "vpcmpestri">,
VEX;
defm VPCMPESTRIO : SS42AI_pcmpestri<int_x86_sse42_pcmpestrio128, "vpcmpestri">,
VEX;
defm VPCMPESTRIS : SS42AI_pcmpestri<int_x86_sse42_pcmpestris128, "vpcmpestri">,
VEX;
defm VPCMPESTRIZ : SS42AI_pcmpestri<int_x86_sse42_pcmpestriz128, "vpcmpestri">,
VEX;
}
defm PCMPESTRI : SS42AI_pcmpestri<int_x86_sse42_pcmpestri128>;
defm PCMPESTRIA : SS42AI_pcmpestri<int_x86_sse42_pcmpestria128>;
defm PCMPESTRIC : SS42AI_pcmpestri<int_x86_sse42_pcmpestric128>;
defm PCMPESTRIO : SS42AI_pcmpestri<int_x86_sse42_pcmpestrio128>;
defm PCMPESTRIS : SS42AI_pcmpestri<int_x86_sse42_pcmpestris128>;
defm PCMPESTRIZ : SS42AI_pcmpestri<int_x86_sse42_pcmpestriz128>;
//===----------------------------------------------------------------------===//
// SSE4.2 - CRC Instructions
//===----------------------------------------------------------------------===//
// No CRC instructions have AVX equivalents
// crc intrinsic instruction
// This set of instructions are only rm, the only difference is the size
// of r and m.
let Constraints = "$src1 = $dst" in {
def CRC32m8 : SS42FI<0xF0, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i8mem:$src2),
"crc32{b} \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_8 GR32:$src1,
(load addr:$src2)))]>;
def CRC32r8 : SS42FI<0xF0, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR8:$src2),
"crc32{b} \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_8 GR32:$src1, GR8:$src2))]>;
def CRC32m16 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i16mem:$src2),
"crc32{w} \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_16 GR32:$src1,
(load addr:$src2)))]>,
OpSize;
def CRC32r16 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR16:$src2),
"crc32{w} \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_16 GR32:$src1, GR16:$src2))]>,
OpSize;
def CRC32m32 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"crc32{l} \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_32 GR32:$src1,
(load addr:$src2)))]>;
def CRC32r32 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src1, GR32:$src2),
"crc32{l} \t{$src2, $src1|$src1, $src2}",
[(set GR32:$dst,
(int_x86_sse42_crc32_32 GR32:$src1, GR32:$src2))]>;
def CRC64m8 : SS42FI<0xF0, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$src1, i8mem:$src2),
"crc32{b} \t{$src2, $src1|$src1, $src2}",
[(set GR64:$dst,
(int_x86_sse42_crc64_8 GR64:$src1,
(load addr:$src2)))]>,
REX_W;
def CRC64r8 : SS42FI<0xF0, MRMSrcReg, (outs GR64:$dst),
(ins GR64:$src1, GR8:$src2),
"crc32{b} \t{$src2, $src1|$src1, $src2}",
[(set GR64:$dst,
(int_x86_sse42_crc64_8 GR64:$src1, GR8:$src2))]>,
REX_W;
def CRC64m64 : SS42FI<0xF1, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$src1, i64mem:$src2),
"crc32{q} \t{$src2, $src1|$src1, $src2}",
[(set GR64:$dst,
(int_x86_sse42_crc64_64 GR64:$src1,
(load addr:$src2)))]>,
REX_W;
def CRC64r64 : SS42FI<0xF1, MRMSrcReg, (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2),
"crc32{q} \t{$src2, $src1|$src1, $src2}",
[(set GR64:$dst,
(int_x86_sse42_crc64_64 GR64:$src1, GR64:$src2))]>,
REX_W;
}
//===----------------------------------------------------------------------===//
// AES-NI Instructions
//===----------------------------------------------------------------------===//
multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr,
Intrinsic IntId128, bit Is2Addr = 1> {
def rr : AES8I<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
OpSize;
def rm : AES8I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2),
!if(Is2Addr,
!strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
[(set VR128:$dst,
(IntId128 VR128:$src1,
(bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
}
// Perform One Round of an AES Encryption/Decryption Flow
let Predicates = [HasAVX, HasAES] in {
defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc",
int_x86_aesni_aesenc, 0>, VEX_4V;
defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast",
int_x86_aesni_aesenclast, 0>, VEX_4V;
defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec",
int_x86_aesni_aesdec, 0>, VEX_4V;
defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast",
int_x86_aesni_aesdeclast, 0>, VEX_4V;
}
let Constraints = "$src1 = $dst" in {
defm AESENC : AESI_binop_rm_int<0xDC, "aesenc",
int_x86_aesni_aesenc>;
defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast",
int_x86_aesni_aesenclast>;
defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec",
int_x86_aesni_aesdec>;
defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast",
int_x86_aesni_aesdeclast>;
}
def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, VR128:$src2)),
(AESENCrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, (memop addr:$src2))),
(AESENCrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (int_x86_aesni_aesenclast VR128:$src1, VR128:$src2)),
(AESENCLASTrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (int_x86_aesni_aesenclast VR128:$src1, (memop addr:$src2))),
(AESENCLASTrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (int_x86_aesni_aesdec VR128:$src1, VR128:$src2)),
(AESDECrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (int_x86_aesni_aesdec VR128:$src1, (memop addr:$src2))),
(AESDECrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, VR128:$src2)),
(AESDECLASTrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, (memop addr:$src2))),
(AESDECLASTrm VR128:$src1, addr:$src2)>;
// Perform the AES InvMixColumn Transformation
let Predicates = [HasAVX, HasAES] in {
def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1),
"vaesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc VR128:$src1))]>,
OpSize, VEX;
def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1),
"vaesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc (bitconvert (memopv2i64 addr:$src1))))]>,
OpSize, VEX;
}
def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1),
"aesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc VR128:$src1))]>,
OpSize;
def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1),
"aesimc\t{$src1, $dst|$dst, $src1}",
[(set VR128:$dst,
(int_x86_aesni_aesimc (bitconvert (memopv2i64 addr:$src1))))]>,
OpSize;
// AES Round Key Generation Assist
let Predicates = [HasAVX, HasAES] in {
def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, i8imm:$src2),
"vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
OpSize, VEX;
def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, i8imm:$src2),
"vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist (bitconvert (memopv2i64 addr:$src1)),
imm:$src2))]>,
OpSize, VEX;
}
def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, i8imm:$src2),
"aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
OpSize;
def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
(ins i128mem:$src1, i8imm:$src2),
"aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst,
(int_x86_aesni_aeskeygenassist (bitconvert (memopv2i64 addr:$src1)),
imm:$src2))]>,
OpSize;
//===----------------------------------------------------------------------===//
// CLMUL Instructions
//===----------------------------------------------------------------------===//
// Only the AVX version of CLMUL instructions are described here.
// Carry-less Multiplication instructions
def VPCLMULQDQrr : CLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, VR128:$src2, i8imm:$src3),
"vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>;
def VPCLMULQDQrm : CLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i128mem:$src2, i8imm:$src3),
"vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>;
// Assembler Only
multiclass avx_vpclmul<string asm> {
def rr : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>;
def rm : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[]>;
}
defm VPCLMULHQHQDQ : avx_vpclmul<"vpclmulhqhqdq">;
defm VPCLMULHQLQDQ : avx_vpclmul<"vpclmulhqlqdq">;
defm VPCLMULLQHQDQ : avx_vpclmul<"vpclmullqhqdq">;
defm VPCLMULLQLQDQ : avx_vpclmul<"vpclmullqlqdq">;
//===----------------------------------------------------------------------===//
// AVX Instructions
//===----------------------------------------------------------------------===//
// Load from memory and broadcast to all elements of the destination operand
class avx_broadcast<bits<8> opc, string OpcodeStr, RegisterClass RC,
X86MemOperand x86memop, Intrinsic Int> :
AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, (Int addr:$src))]>, VEX;
def VBROADCASTSS : avx_broadcast<0x18, "vbroadcastss", VR128, f32mem,
int_x86_avx_vbroadcastss>;
def VBROADCASTSSY : avx_broadcast<0x18, "vbroadcastss", VR256, f32mem,
int_x86_avx_vbroadcastss_256>;
def VBROADCASTSD : avx_broadcast<0x19, "vbroadcastsd", VR256, f64mem,
int_x86_avx_vbroadcast_sd_256>;
def VBROADCASTF128 : avx_broadcast<0x1A, "vbroadcastf128", VR256, f128mem,
int_x86_avx_vbroadcastf128_pd_256>;
// Insert packed floating-point values
def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR128:$src2, i8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, VEX_4V;
def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f128mem:$src2, i8imm:$src3),
"vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, VEX_4V;
// Extract packed floating-point values
def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst),
(ins VR256:$src1, i8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, VEX;
def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs),
(ins f128mem:$dst, VR256:$src1, i8imm:$src2),
"vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, VEX;
// Conditional SIMD Packed Loads and Stores
multiclass avx_movmask_rm<bits<8> opc_rm, bits<8> opc_mr, string OpcodeStr,
Intrinsic IntLd, Intrinsic IntLd256,
Intrinsic IntSt, Intrinsic IntSt256,
PatFrag pf128, PatFrag pf256> {
def rm : AVX8I<opc_rm, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR128:$dst, (IntLd addr:$src2, VR128:$src1))]>,
VEX_4V;
def Yrm : AVX8I<opc_rm, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
VEX_4V;
def mr : AVX8I<opc_mr, MRMDestMem, (outs),
(ins f128mem:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt addr:$dst, VR128:$src1, VR128:$src2)]>, VEX_4V;
def Ymr : AVX8I<opc_mr, MRMDestMem, (outs),
(ins f256mem:$dst, VR256:$src1, VR256:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, VEX_4V;
}
defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps",
int_x86_avx_maskload_ps,
int_x86_avx_maskload_ps_256,
int_x86_avx_maskstore_ps,
int_x86_avx_maskstore_ps_256,
memopv4f32, memopv8f32>;
defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd",
int_x86_avx_maskload_pd,
int_x86_avx_maskload_pd_256,
int_x86_avx_maskstore_pd,
int_x86_avx_maskstore_pd_256,
memopv2f64, memopv4f64>;
// Permute Floating-Point Values
multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
RegisterClass RC, X86MemOperand x86memop_f,
X86MemOperand x86memop_i, PatFrag f_frag, PatFrag i_frag,
Intrinsic IntVar, Intrinsic IntImm> {
def rr : AVX8I<opc_rm, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (IntVar RC:$src1, RC:$src2))]>, VEX_4V;
def rm : AVX8I<opc_rm, MRMSrcMem, (outs RC:$dst),
(ins RC:$src1, x86memop_i:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (IntVar RC:$src1, (i_frag addr:$src2)))]>, VEX_4V;
def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst),
(ins RC:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (IntImm RC:$src1, imm:$src2))]>, VEX;
def mi : AVXAIi8<opc_rmi, MRMSrcMem, (outs RC:$dst),
(ins x86memop_f:$src1, i8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (IntImm (f_frag addr:$src1), imm:$src2))]>, VEX;
}
defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem,
memopv4f32, memopv4i32,
int_x86_avx_vpermilvar_ps,
int_x86_avx_vpermil_ps>;
defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem,
memopv8f32, memopv8i32,
int_x86_avx_vpermilvar_ps_256,
int_x86_avx_vpermil_ps_256>;
defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem,
memopv2f64, memopv2i64,
int_x86_avx_vpermilvar_pd,
int_x86_avx_vpermil_pd>;
defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem,
memopv4f64, memopv4i64,
int_x86_avx_vpermilvar_pd_256,
int_x86_avx_vpermil_pd_256>;
def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst),
(ins VR256:$src1, VR256:$src2, i8imm:$src3),
"vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, VEX_4V;
def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst),
(ins VR256:$src1, f256mem:$src2, i8imm:$src3),
"vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, VEX_4V;
// Zero All YMM registers
def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall",
[(int_x86_avx_vzeroall)]>, VEX, VEX_L, Requires<[HasAVX]>;
// Zero Upper bits of YMM registers
def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper",
[(int_x86_avx_vzeroupper)]>, VEX, Requires<[HasAVX]>;
def : Pat<(int_x86_avx_vinsertf128_pd_256 VR256:$src1, VR128:$src2, imm:$src3),
(VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vinsertf128_ps_256 VR256:$src1, VR128:$src2, imm:$src3),
(VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vinsertf128_si_256 VR256:$src1, VR128:$src2, imm:$src3),
(VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>;
def : Pat<(vinsertf128_insert:$ins (v8f32 VR256:$src1), (v4f32 VR128:$src2),
(i32 imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsertf128_imm VR256:$ins))>;
def : Pat<(vinsertf128_insert:$ins (v4f64 VR256:$src1), (v2f64 VR128:$src2),
(i32 imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsertf128_imm VR256:$ins))>;
def : Pat<(vinsertf128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2),
(i32 imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsertf128_imm VR256:$ins))>;
def : Pat<(vinsertf128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2),
(i32 imm)),
(VINSERTF128rr VR256:$src1, VR128:$src2,
(INSERT_get_vinsertf128_imm VR256:$ins))>;
def : Pat<(int_x86_avx_vextractf128_pd_256 VR256:$src1, imm:$src2),
(VEXTRACTF128rr VR256:$src1, imm:$src2)>;
def : Pat<(int_x86_avx_vextractf128_ps_256 VR256:$src1, imm:$src2),
(VEXTRACTF128rr VR256:$src1, imm:$src2)>;
def : Pat<(int_x86_avx_vextractf128_si_256 VR256:$src1, imm:$src2),
(VEXTRACTF128rr VR256:$src1, imm:$src2)>;
def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
(v4f32 (VEXTRACTF128rr
(v8f32 VR256:$src1),
(EXTRACT_get_vextractf128_imm VR128:$ext)))>;
def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
(v2f64 (VEXTRACTF128rr
(v4f64 VR256:$src1),
(EXTRACT_get_vextractf128_imm VR128:$ext)))>;
def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
(v4i32 (VEXTRACTF128rr
(v8i32 VR256:$src1),
(EXTRACT_get_vextractf128_imm VR128:$ext)))>;
def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)),
(v2i64 (VEXTRACTF128rr
(v4i64 VR256:$src1),
(EXTRACT_get_vextractf128_imm VR128:$ext)))>;
def : Pat<(int_x86_avx_vbroadcastf128_ps_256 addr:$src),
(VBROADCASTF128 addr:$src)>;
def : Pat<(int_x86_avx_vperm2f128_ps_256 VR256:$src1, VR256:$src2, imm:$src3),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vperm2f128_pd_256 VR256:$src1, VR256:$src2, imm:$src3),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vperm2f128_si_256 VR256:$src1, VR256:$src2, imm:$src3),
(VPERM2F128rr VR256:$src1, VR256:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vperm2f128_ps_256
VR256:$src1, (memopv8f32 addr:$src2), imm:$src3),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vperm2f128_pd_256
VR256:$src1, (memopv4f64 addr:$src2), imm:$src3),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>;
def : Pat<(int_x86_avx_vperm2f128_si_256
VR256:$src1, (memopv8i32 addr:$src2), imm:$src3),
(VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>;
//===----------------------------------------------------------------------===//
// SSE Shuffle pattern fragments
//===----------------------------------------------------------------------===//
// This is part of a "work in progress" refactoring. The idea is that all
// vector shuffles are going to be translated into target specific nodes and
// directly matched by the patterns below (which can be changed along the way)
// The AVX version of some but not all of them are described here, and more
// should come in a near future.
// Shuffle with PSHUFD instruction folding loads. The first two patterns match
// SSE2 loads, which are always promoted to v2i64. The last one should match
// the SSE1 case, where the only legal load is v4f32, but there is no PSHUFD
// in SSE2, how does it ever worked? Anyway, the pattern will remain here until
// we investigate further.
def : Pat<(v4i32 (X86PShufd (bc_v4i32 (memopv2i64 addr:$src1)),
(i8 imm:$imm))),
(VPSHUFDmi addr:$src1, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v4i32 (X86PShufd (bc_v4i32 (memopv2i64 addr:$src1)),
(i8 imm:$imm))),
(PSHUFDmi addr:$src1, imm:$imm)>;
def : Pat<(v4i32 (X86PShufd (bc_v4i32 (memopv4f32 addr:$src1)),
(i8 imm:$imm))),
(PSHUFDmi addr:$src1, imm:$imm)>; // FIXME: has this ever worked?
// Shuffle with PSHUFD instruction.
def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
(VPSHUFDri VR128:$src1, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
(PSHUFDri VR128:$src1, imm:$imm)>;
def : Pat<(v4i32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
(VPSHUFDri VR128:$src1, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v4i32 (X86PShufd VR128:$src1, (i8 imm:$imm))),
(PSHUFDri VR128:$src1, imm:$imm)>;
// Shuffle with SHUFPD instruction.
def : Pat<(v2f64 (X86Shufps VR128:$src1,
(memopv2f64 addr:$src2), (i8 imm:$imm))),
(VSHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v2f64 (X86Shufps VR128:$src1,
(memopv2f64 addr:$src2), (i8 imm:$imm))),
(SHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v2i64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VSHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v2i64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(SHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
def : Pat<(v2f64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VSHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v2f64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(SHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
// Shuffle with SHUFPS instruction.
def : Pat<(v4f32 (X86Shufps VR128:$src1,
(memopv4f32 addr:$src2), (i8 imm:$imm))),
(VSHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v4f32 (X86Shufps VR128:$src1,
(memopv4f32 addr:$src2), (i8 imm:$imm))),
(SHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v4f32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VSHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v4f32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(SHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
def : Pat<(v4i32 (X86Shufps VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)), (i8 imm:$imm))),
(VSHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v4i32 (X86Shufps VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)), (i8 imm:$imm))),
(SHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
def : Pat<(v4i32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(VSHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>;
def : Pat<(v4i32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(SHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
// Shuffle with MOVHLPS instruction
def : Pat<(v4f32 (X86Movhlps VR128:$src1, VR128:$src2)),
(MOVHLPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)),
(MOVHLPSrr VR128:$src1, VR128:$src2)>;
// Shuffle with MOVDDUP instruction
def : Pat<(X86Movddup (memopv2f64 addr:$src)),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (memopv2f64 addr:$src)),
(MOVDDUPrm addr:$src)>;
def : Pat<(X86Movddup (bc_v2f64 (memopv4f32 addr:$src))),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (bc_v2f64 (memopv4f32 addr:$src))),
(MOVDDUPrm addr:$src)>;
def : Pat<(X86Movddup (bc_v2f64 (memopv2i64 addr:$src))),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (bc_v2f64 (memopv2i64 addr:$src))),
(MOVDDUPrm addr:$src)>;
def : Pat<(X86Movddup (v2f64 (scalar_to_vector (loadf64 addr:$src)))),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (v2f64 (scalar_to_vector (loadf64 addr:$src)))),
(MOVDDUPrm addr:$src)>;
def : Pat<(X86Movddup (bc_v2f64
(v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
def : Pat<(X86Movddup (bc_v2f64
(v2i64 (scalar_to_vector (loadi64 addr:$src))))),
(MOVDDUPrm addr:$src)>;
// Shuffle with UNPCKLPS
def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))),
(VUNPCKLPSrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>;
def : Pat<(v8f32 (X86Unpcklpsy VR256:$src1, (memopv8f32 addr:$src2))),
(VUNPCKLPSYrm VR256:$src1, addr:$src2)>, Requires<[HasAVX]>;
def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))),
(UNPCKLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)),
(VUNPCKLPSrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>;
def : Pat<(v8f32 (X86Unpcklpsy VR256:$src1, VR256:$src2)),
(VUNPCKLPSYrr VR256:$src1, VR256:$src2)>, Requires<[HasAVX]>;
def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)),
(UNPCKLPSrr VR128:$src1, VR128:$src2)>;
// Shuffle with UNPCKHPS
def : Pat<(v4f32 (X86Unpckhps VR128:$src1, (memopv4f32 addr:$src2))),
(VUNPCKHPSrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>;
def : Pat<(v4f32 (X86Unpckhps VR128:$src1, (memopv4f32 addr:$src2))),
(UNPCKHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v4f32 (X86Unpckhps VR128:$src1, VR128:$src2)),
(VUNPCKHPSrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>;
def : Pat<(v4f32 (X86Unpckhps VR128:$src1, VR128:$src2)),
(UNPCKHPSrr VR128:$src1, VR128:$src2)>;
// Shuffle with UNPCKLPD
def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))),
(VUNPCKLPDrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>;
def : Pat<(v4f64 (X86Unpcklpdy VR256:$src1, (memopv4f64 addr:$src2))),
(VUNPCKLPDYrm VR256:$src1, addr:$src2)>, Requires<[HasAVX]>;
def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))),
(UNPCKLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)),
(VUNPCKLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>;
def : Pat<(v4f64 (X86Unpcklpdy VR256:$src1, VR256:$src2)),
(VUNPCKLPDYrr VR256:$src1, VR256:$src2)>, Requires<[HasAVX]>;
def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)),
(UNPCKLPDrr VR128:$src1, VR128:$src2)>;
// Shuffle with UNPCKHPD
def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, (memopv2f64 addr:$src2))),
(VUNPCKHPDrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>;
def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, (memopv2f64 addr:$src2))),
(UNPCKHPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, VR128:$src2)),
(VUNPCKHPDrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>;
def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, VR128:$src2)),
(UNPCKHPDrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKLBW
def : Pat<(v16i8 (X86Punpcklbw VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2)))),
(PUNPCKLBWrm VR128:$src1, addr:$src2)>;
def : Pat<(v16i8 (X86Punpcklbw VR128:$src1, VR128:$src2)),
(PUNPCKLBWrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKLWD
def : Pat<(v8i16 (X86Punpcklwd VR128:$src1,
(bc_v8i16 (memopv2i64 addr:$src2)))),
(PUNPCKLWDrm VR128:$src1, addr:$src2)>;
def : Pat<(v8i16 (X86Punpcklwd VR128:$src1, VR128:$src2)),
(PUNPCKLWDrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKLDQ
def : Pat<(v4i32 (X86Punpckldq VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)))),
(PUNPCKLDQrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86Punpckldq VR128:$src1, VR128:$src2)),
(PUNPCKLDQrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKLQDQ
def : Pat<(v2i64 (X86Punpcklqdq VR128:$src1, (memopv2i64 addr:$src2))),
(PUNPCKLQDQrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (X86Punpcklqdq VR128:$src1, VR128:$src2)),
(PUNPCKLQDQrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKHBW
def : Pat<(v16i8 (X86Punpckhbw VR128:$src1,
(bc_v16i8 (memopv2i64 addr:$src2)))),
(PUNPCKHBWrm VR128:$src1, addr:$src2)>;
def : Pat<(v16i8 (X86Punpckhbw VR128:$src1, VR128:$src2)),
(PUNPCKHBWrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKHWD
def : Pat<(v8i16 (X86Punpckhwd VR128:$src1,
(bc_v8i16 (memopv2i64 addr:$src2)))),
(PUNPCKHWDrm VR128:$src1, addr:$src2)>;
def : Pat<(v8i16 (X86Punpckhwd VR128:$src1, VR128:$src2)),
(PUNPCKHWDrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKHDQ
def : Pat<(v4i32 (X86Punpckhdq VR128:$src1,
(bc_v4i32 (memopv2i64 addr:$src2)))),
(PUNPCKHDQrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86Punpckhdq VR128:$src1, VR128:$src2)),
(PUNPCKHDQrr VR128:$src1, VR128:$src2)>;
// Shuffle with PUNPCKHQDQ
def : Pat<(v2i64 (X86Punpckhqdq VR128:$src1, (memopv2i64 addr:$src2))),
(PUNPCKHQDQrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (X86Punpckhqdq VR128:$src1, VR128:$src2)),
(PUNPCKHQDQrr VR128:$src1, VR128:$src2)>;
// Shuffle with MOVLHPS
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlhps VR128:$src1,
(bc_v4i32 (v2i64 (X86vzload addr:$src2)))),
(MOVHPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v4f32 (X86Movlhps VR128:$src1, VR128:$src2)),
(MOVLHPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)),
(MOVLHPSrr VR128:$src1, VR128:$src2)>;
def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)),
(MOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>;
// FIXME: Instead of X86Movddup, there should be a X86Unpcklpd here, the problem
// is during lowering, where it's not possible to recognize the load fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(v2f64 (X86Movddup VR128:$src)),
(UNPCKLPDrr VR128:$src, VR128:$src)>;
// Shuffle with MOVLHPD
def : Pat<(v2f64 (X86Movlhpd VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(MOVHPDrm VR128:$src1, addr:$src2)>;
// FIXME: Instead of X86Unpcklpd, there should be a X86Movlhpd here, the problem
// is during lowering, where it's not possible to recognize the load fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(v2f64 (X86Unpcklpd VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(MOVHPDrm VR128:$src1, addr:$src2)>;
// Shuffle with MOVSS
def : Pat<(v4f32 (X86Movss VR128:$src1, (scalar_to_vector FR32:$src2))),
(MOVSSrr VR128:$src1, FR32:$src2)>;
def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
(MOVSSrr (v4i32 VR128:$src1),
(EXTRACT_SUBREG (v4i32 VR128:$src2), sub_ss))>;
def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
(MOVSSrr (v4f32 VR128:$src1),
(EXTRACT_SUBREG (v4f32 VR128:$src2), sub_ss))>;
// FIXME: Instead of a X86Movss there should be a X86Movlps here, the problem
// is during lowering, where it's not possible to recognize the load fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(X86Movss VR128:$src1,
(bc_v4i32 (v2i64 (load addr:$src2)))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
// Shuffle with MOVSD
def : Pat<(v2f64 (X86Movsd VR128:$src1, (scalar_to_vector FR64:$src2))),
(MOVSDrr VR128:$src1, FR64:$src2)>;
def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr (v2i64 VR128:$src1),
(EXTRACT_SUBREG (v2i64 VR128:$src2), sub_sd))>;
def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr (v2f64 VR128:$src1),
(EXTRACT_SUBREG (v2f64 VR128:$src2), sub_sd))>;
def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_sd))>;
def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4i32 VR128:$src2), sub_sd))>;
// Shuffle with MOVSHDUP
def : Pat<(v4i32 (X86Movshdup VR128:$src)),
(MOVSHDUPrr VR128:$src)>;
def : Pat<(X86Movshdup (bc_v4i32 (memopv2i64 addr:$src))),
(MOVSHDUPrm addr:$src)>;
def : Pat<(v4f32 (X86Movshdup VR128:$src)),
(MOVSHDUPrr VR128:$src)>;
def : Pat<(X86Movshdup (memopv4f32 addr:$src)),
(MOVSHDUPrm addr:$src)>;
// Shuffle with MOVSLDUP
def : Pat<(v4i32 (X86Movsldup VR128:$src)),
(MOVSLDUPrr VR128:$src)>;
def : Pat<(X86Movsldup (bc_v4i32 (memopv2i64 addr:$src))),
(MOVSLDUPrm addr:$src)>;
def : Pat<(v4f32 (X86Movsldup VR128:$src)),
(MOVSLDUPrr VR128:$src)>;
def : Pat<(X86Movsldup (memopv4f32 addr:$src)),
(MOVSLDUPrm addr:$src)>;
// Shuffle with PSHUFHW
def : Pat<(v8i16 (X86PShufhw VR128:$src, (i8 imm:$imm))),
(PSHUFHWri VR128:$src, imm:$imm)>;
def : Pat<(v8i16 (X86PShufhw (bc_v8i16 (memopv2i64 addr:$src)), (i8 imm:$imm))),
(PSHUFHWmi addr:$src, imm:$imm)>;
// Shuffle with PSHUFLW
def : Pat<(v8i16 (X86PShuflw VR128:$src, (i8 imm:$imm))),
(PSHUFLWri VR128:$src, imm:$imm)>;
def : Pat<(v8i16 (X86PShuflw (bc_v8i16 (memopv2i64 addr:$src)), (i8 imm:$imm))),
(PSHUFLWmi addr:$src, imm:$imm)>;
// Shuffle with PALIGN
def : Pat<(v4i32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v4f32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v8i16 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
def : Pat<(v16i8 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))),
(PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>;
// Shuffle with MOVLPS
def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
def : Pat<(X86Movlps VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
(MOVLPSrm VR128:$src1, addr:$src2)>;
// FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
// is during lowering, where it's not possible to recognize the load fold cause
// it has two uses through a bitcast. One use disappears at isel time and the
// fold opportunity reappears.
def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_sd))>;
def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
(MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4i32 VR128:$src2), sub_sd))>;
// Shuffle with MOVLPD
def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
def : Pat<(v2f64 (X86Movlpd VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)))),
(MOVLPDrm VR128:$src1, addr:$src2)>;
// Extra patterns to match stores with MOVHPS/PD and MOVLPS/PD
def : Pat<(store (f64 (vector_extract
(v2f64 (X86Unpckhps VR128:$src, (undef))), (iPTR 0))),addr:$dst),
(MOVHPSmr addr:$dst, VR128:$src)>;
def : Pat<(store (f64 (vector_extract
(v2f64 (X86Unpckhpd VR128:$src, (undef))), (iPTR 0))),addr:$dst),
(MOVHPDmr addr:$dst, VR128:$src)>;
def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v4i32 (X86Movlps
(bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)), addr:$src1),
(MOVLPSmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>;
def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),addr:$src1),
(MOVLPDmr addr:$src1, VR128:$src2)>;