converted to LEA64_32r in x86's convertToThreeAddress. This
replaces code like this:
movl %esi, %edi
inc %edi
with this:
lea 1(%rsi), %edi
which appears to be beneficial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61830 91177308-0d34-0410-b5e6-96231b3b80d8
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61542 91177308-0d34-0410-b5e6-96231b3b80d8
This removes all the _8, _16, _32, and _64 opcodes and replaces each
group with an unsuffixed opcode. The MemoryVT field of the AtomicSDNode
is now used to carry the size information. In tablegen, the size-specific
opcodes are replaced by size-independent opcodes that utilize the
ability to compose them with predicates.
This shrinks the per-opcode tables and makes the code that handles
atomics much more concise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61389 91177308-0d34-0410-b5e6-96231b3b80d8
constant shift count that doesn't fit in the shift instruction's
immediate field. This fixes PR3242.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61281 91177308-0d34-0410-b5e6-96231b3b80d8
that have i32 immediates so that they get selected first. This
currently only matters in the JIT, as assemblers will
automatically use the smallest encoding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61250 91177308-0d34-0410-b5e6-96231b3b80d8
The EH_frame and .eh symbols are now private, except for darwin9 and earlier.
The patch also fixes the definition of PrivateGlobalPrefix on pcc linux.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61242 91177308-0d34-0410-b5e6-96231b3b80d8
and the RegisterScavenger not to expect traditional liveness
techniques are applicable to these registers, since we don't fully
modify the effects of push and pop after stackification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61179 91177308-0d34-0410-b5e6-96231b3b80d8
which are identical to the original patterns.
- Change the multiply with overflow so that we distinguish between signed and
unsigned multiplication. Currently, unsigned multiplication with overflow
isn't working!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60963 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::ADD to emit an implicit EFLAGS. This was horribly broken. Instead, replace
the intrinsic with an ISD::SADDO node. Then custom lower that into an
X86ISD::ADD node with a associated SETCC that checks the correct condition code
(overflow or carry). Then that gets lowered into the correct X86::ADDOvf
instruction.
Similar for SUB and MUL instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60915 91177308-0d34-0410-b5e6-96231b3b80d8
overflow/carry from the "arithmetic with overflow" intrinsics. It searches the
machine basic block from bottom to top to find the SETO/SETC instruction that is
its conditional. If an instruction modifies EFLAGS before it reaches the
SETO/SETC instruction, then it defaults to the normal instruction emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60807 91177308-0d34-0410-b5e6-96231b3b80d8
target-independent way of determining overflow on multiplication. It's very
tricky. Patch by Zoltan Varga!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60800 91177308-0d34-0410-b5e6-96231b3b80d8
complete. For instance, it lowers the common case into this less-than-optimal
code:
addl %ecx, %eax
seto %cl
testb %cl, %cl
jne LBB1_2 ## overflow
instead of:
addl %ecx, %eax
jo LBB1_2 ## overflow
That will come in a future commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60737 91177308-0d34-0410-b5e6-96231b3b80d8
and use it in x86 address mode folding. Also, make
getRegForValue return 0 for illegal types even if it has a
ValueMap for them, because Argument values are put in the
ValueMap. This fixes PR3181.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60696 91177308-0d34-0410-b5e6-96231b3b80d8
loops when they can be subsumed into addressing modes.
Change X86 addressing mode check to realize that
some PIC references need an extra register.
(I believe this is correct for Linux, if not, I'm sure
someone will tell me.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60608 91177308-0d34-0410-b5e6-96231b3b80d8
1. GlobalBaseReg may have been spilled.
2. It may not be live at the use.
3. Spiller doesn't know this is happening so it won't prevent GlobalBaseReg from being spilled later (That by itself is a nasty hack. It's needed because we don't insert the reload until later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60595 91177308-0d34-0410-b5e6-96231b3b80d8
the frame reference. This will help post-RA scheduling determine
that spills to distinct stack slots are independent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60486 91177308-0d34-0410-b5e6-96231b3b80d8
foldMemoryOperand how to "fold" them, by converting them into constant-pool
loads. When they aren't folded, they use xorps/cmpeqd, but for example when
register pressure is high, they may now be folded as memory operands, which
reduces register pressure.
Also, mark V_SET0 isAsCheapAsAMove so that two-address-elimination will
remat it instead of copying zeros around (V_SETALLONES was already marked).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60461 91177308-0d34-0410-b5e6-96231b3b80d8
delegates to the regular x86-32 convention which handles byval, but only
after it handles a few cases, and it's necessary to handle byval before
handling those cases. This fixes PR3122 (and rdar://6400815), llvm-gcc
miscompiling LLVM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60453 91177308-0d34-0410-b5e6-96231b3b80d8
- LowerXADDO lowers [SU]ADDO into an ADD with an implicit EFLAGS define. The
EFLAGS are fed into a SETCC node which has the conditional COND_O or COND_C,
depending on the type of ADDO requested.
- LowerBRCOND now recognizes if it's coming from a SETCC node with COND_O or
COND_C set.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60388 91177308-0d34-0410-b5e6-96231b3b80d8
MERGE_VALUES node with only one operand, so get
rid of special code that only existed to handle
that possibility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60349 91177308-0d34-0410-b5e6-96231b3b80d8
ReplaceNodeResults: rather than returning a node which
must have the same number of results as the original
node (which means mucking around with MERGE_VALUES,
and which is also easy to get wrong since SelectionDAG
folding may mean you don't get the node you expect),
return the results in a vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60348 91177308-0d34-0410-b5e6-96231b3b80d8
the conditional for the BRCOND statement. For instance, it will generate:
addl %eax, %ecx
jo LOF
instead of
addl %eax, %ecx
; About 10 instructions to compare the signs of LHS, RHS, and sum.
jl LOF
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60123 91177308-0d34-0410-b5e6-96231b3b80d8
- Mark "add with overflow" as having a custom lowering for X86. Give it a null
lowering representation for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59971 91177308-0d34-0410-b5e6-96231b3b80d8
well as 2 files that use "Registrator"s. These are to be used by the
MSVC builds, as the Win32 linker does not include libs that are
otherwise unreferenced, even if global constructors in the lib have
side-effects.
Patch by Scott Graham!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59378 91177308-0d34-0410-b5e6-96231b3b80d8
(actually, code already all worked, only the comment
changed). Use this to implement 'A' constraint on x86.
Fixes PR 1779.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59266 91177308-0d34-0410-b5e6-96231b3b80d8
special-purpose hook to a new pass. Also, add check to see if any
x87 virtual registers are used, to avoid doing any work in the
common case that no x87 code is needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59190 91177308-0d34-0410-b5e6-96231b3b80d8
to be sign-extended when it is promoted to 64 bits for intermediate
offset calculations. The offset calculations are done as uint64_t so that
overflow conditions are well defined.
This fixes a problem which is currently hidden by the x86 AsmPrinter but
which was exposed by r58917 (which is temporarily reverted). See PR3027
for details.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59044 91177308-0d34-0410-b5e6-96231b3b80d8
FIXME: it seems, that most of targets don't support
offsets wrt CPI/GlobalAddress', was it intentional?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58917 91177308-0d34-0410-b5e6-96231b3b80d8
This is a temporary fix for the -print-emitted-asm option, where
errs() is used as the stream, in the case where other code is
using stderr without using errs()' buffer. Hopefully soon we'll
fix errs() to be non-buffered instead. Patch by Preston Gurd.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58859 91177308-0d34-0410-b5e6-96231b3b80d8
priority function. Instead, just iterate over the AllNodes list, which is
already in topological order. This eliminates a fair amount of bookkeeping,
and speeds up the isel phase by about 15% on many testcases.
The impact on most targets is that AddToISelQueue calls can be simply removed.
In the x86 target, there are two additional notable changes.
The rule-bending AND+SHIFT optimization in MatchAddress that creates new
pre-isel nodes during isel is now a little more verbose, but more robust.
Instead of either creating an invalid DAG or creating an invalid topological
sort, as it has historically done, it can now just insert the new nodes into
the node list at a position where they will be consistent with the topological
ordering.
Also, the address-matching code has logic that checked to see if a node was
"already selected". However, when a node is selected, it has all its uses
taken away via ReplaceAllUsesWith or equivalent, so it won't recieve any
further visits from MatchAddress. This code is now removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58748 91177308-0d34-0410-b5e6-96231b3b80d8
have its node id set. The new and and shift nodes are the nodes that need
the IDs. This fixes PR2982.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58655 91177308-0d34-0410-b5e6-96231b3b80d8
callee-saved restore code. It could skip over conditional jumps
accidentally. Instead, just skip the "return" instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58489 91177308-0d34-0410-b5e6-96231b3b80d8
a memset using 16-byte XMM stores, but where the stack realignment code
didn't work. Until it does (PR2962) disable use of xmm regs in memcpy
and memset formation for linux and other targets with insufficiently
aligned stacks.
This is part of PR2888
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58317 91177308-0d34-0410-b5e6-96231b3b80d8
flag. Then in a debugger developers can set breakpoints at these calls
to see waht is about to be selected and what the resulting subgraph
looks like. This really helps when debugging instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58278 91177308-0d34-0410-b5e6-96231b3b80d8
target-independent code to target-specific code. This prevents it
from running on targets that aren't using fast-isel.
In addition to saving compile time, this addresses the problem
that not all targets are prepared for it. In order to use this
pass, all instructions must declare all their fixed uses and
defs of physical registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58144 91177308-0d34-0410-b5e6-96231b3b80d8
variable is moved to the execution engine. The JIT calls the TargetJITInfo
to allocate thread local storage. Currently, only linux/x86 knows how to
allocate thread local global variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58142 91177308-0d34-0410-b5e6-96231b3b80d8
LHS is a foldable load, then LHS and RHS are swapped
and SetCCOpcode is changed to SETUGT. But the later
code is expecting operands to be the wrong way round
for SETUGT, but they are not in this case, resulting
in an inverted compare. The solution is to move the
load normalization before the correction for SETUGT.
This bug was tickled by LegalizeTypes which happened
to legalize the testcase slightly differently to
LegalizeDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58092 91177308-0d34-0410-b5e6-96231b3b80d8
assume that i64 has been turned into a BUILD_PAIR
node (when called from LegalizeTypes this hasn't
happened yet) and don't use a vector shuffle mask
with an illegal element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57972 91177308-0d34-0410-b5e6-96231b3b80d8
The same one Apple gcc uses, faster. Also gets the
extreme case in gcc.c-torture/execute/ieee/rbug.c
correct which we weren't before; this is not
sufficient to get the test to pass though, there
is another bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57926 91177308-0d34-0410-b5e6-96231b3b80d8
in the 32-bit signed offset field of addresses. Even though this
may be intended, some linkers refuse to relocate code where the
relocated address computation overflows.
Also, fix the sign-extension of constant offsets to use the
actual pointer size, rather than the size of the GlobalAddress
node, which may be different, for example on x86-64 where MVT::i32
is used when the address is being fit into the 32-bit displacement
field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57885 91177308-0d34-0410-b5e6-96231b3b80d8
Where previously LLVM might emit code like this:
ucomisd %xmm1, %xmm0
setne %al
setp %cl
orb %al, %cl
jne .LBB4_2
it now emits this:
ucomisd %xmm1, %xmm0
jne .LBB4_2
jp .LBB4_2
It has fewer instructions and uses fewer registers, but it does
have more branches. And in the case that this code is followed by
a non-fallthrough edge, it may be followed by a jmp instruction,
resulting in three branch instructions in sequence. Some effort
is made to avoid this situation.
To achieve this, X86ISelLowering.cpp now recognizes FCMP_OEQ and
FCMP_UNE in lowered form, and replace them with code that emits
two branches, except in the case where it would require converting
a fall-through edge to an explicit branch.
Also, X86InstrInfo.cpp's branch analysis and transform code now
knows now to handle blocks with multiple conditional branches. It
uses loops instead of having fixed checks for up to two
instructions. It can now analyze and transform code generated
from FCMP_OEQ and FCMP_UNE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57873 91177308-0d34-0410-b5e6-96231b3b80d8
the copy instruction from the instruction list before asking the
target to create the new instruction. This gets the old instruction
out of the way so that it doesn't interfere with the target's
rematerialization code. In the case of x86, this helps it find
more cases where EFLAGS is not live.
Also, in the X86InstrInfo.cpp, teach isSafeToClobberEFLAGS to check
to see if it reached the end of the block after scanning each
instruction, instead of just before. This lets it notice when the
end of the block is only two instructions away, without doing any
additional scanning.
These changes allow rematerialization to clobber EFLAGS in more
cases, for example using xor instead of mov to set the return value
to zero in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57872 91177308-0d34-0410-b5e6-96231b3b80d8
LowerOperation if it doesn't know what else to do.
This methods should probably be factorized some,
but this is good enough for the moment. Have
LowerATOMIC_BINARY_64 use EXTRACT_ELEMENT rather
than assuming the operand is a BUILD_PAIR (if it
is then getNode will automagically simplify the
EXTRACT_ELEMENT). This way LowerATOMIC_BINARY_64
usable from LegalizeTypes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57831 91177308-0d34-0410-b5e6-96231b3b80d8
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57748 91177308-0d34-0410-b5e6-96231b3b80d8
in 32-bit mode instead of assigning a register pair. This has nothing to
do with PR2356, but I happened to notice it while working on it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57704 91177308-0d34-0410-b5e6-96231b3b80d8
use a SUB instruction instead of an ADD, because -128 can be
encoded in an 8-bit signed immediate field, while +128 can't be.
This avoids the need for a 32-bit immediate field in this case.
A similar optimization applies to 64-bit adds with 0x80000000,
with the 32-bit signed immediate field.
To support this, teach tablegen how to handle 64-bit constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57663 91177308-0d34-0410-b5e6-96231b3b80d8
shift counts, and patterns that match dynamic shift counts
when the subtract is obscured by a truncate node.
Add DAGCombiner support for recognizing rotate patterns
when the shift counts are defined by truncate nodes.
Fix and simplify the code for commuting shld and shrd
instructions to work even when the given instruction doesn't
have a parent, and when the caller needs a new instruction.
These changes allow LLVM to use the shld, shrd, rol, and ror
instructions on x86 to replace equivalent code using two
shifts and an or in many more cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57662 91177308-0d34-0410-b5e6-96231b3b80d8
x86 backend. These will all be answered with "patches welcome", so
a PR doesn't help drive them along.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57630 91177308-0d34-0410-b5e6-96231b3b80d8
the predicates by extending simple predicates to create
more complex predicates instead of duplicating the logic
for the simple predicates.
This doesn't reduce much redundancy in DAGISelEmitter.cpp's
generated source yet; that will require improvements to
DAGISelEmitter.cpp's instruction sorting, to make it more
effectively group nodes with similar predicates together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57565 91177308-0d34-0410-b5e6-96231b3b80d8
are due to argument passing in calls. This is significant because
it hits all immediate arguments to calls on x86-32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57556 91177308-0d34-0410-b5e6-96231b3b80d8
1. Compute action in X86SelectSelect based on MVT instead of type.
2. Use TLI.getValueType(..) instead of MVT::getVT(..) because the former
handles pointers and the later doesn't.
3. Don't pass TLI into isTypeLegal, since it already has access to it as
an ivar.
#2 gives fast isel some minor new functionality: handling load/stores of
pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57552 91177308-0d34-0410-b5e6-96231b3b80d8
which makes it easy to share the compare/imm folding logic with 'setcc'.
This shaves a bunch of instructions off the common select case, which
happens a lot in llvm-gcc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57549 91177308-0d34-0410-b5e6-96231b3b80d8
i.e. conditions that cannot be checked with a single instruction. For example,
SETONE and SETUEQ on x86.
- Teach legalizer to implement *illegal* setcc as a and / or of a number of
legal setcc nodes. For now, only implement FP conditions. e.g. SETONE is
implemented as SETO & SETNE, SETUEQ is SETUO | SETEQ.
- Move x86 target over.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57542 91177308-0d34-0410-b5e6-96231b3b80d8
- Move the EH landing-pad code and adjust it so that it works
with FastISel as well as with SDISel.
- Add FastISel support for @llvm.eh.exception and
@llvm.eh.selector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57539 91177308-0d34-0410-b5e6-96231b3b80d8
instead of requiring all "short description" strings to begin with
two spaces. This makes these strings less mysterious, and it fixes
some cases where short description strings mistakenly did not
begin with two spaces.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57521 91177308-0d34-0410-b5e6-96231b3b80d8
create a new DAG node to represent the new shift to keep the
DAG consistent, even though it'll almost always be folded into
the address.
If a user of the resulting address has multiple uses, the
nodes may get revisited by a later MatchAddress call, in which
case DAG inconsistencies do matter.
This fixes PR2849.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57465 91177308-0d34-0410-b5e6-96231b3b80d8
parameters instead of raw Constants. This prevents the constants from
being selected by the isel pass, fixing PR2735.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57385 91177308-0d34-0410-b5e6-96231b3b80d8
the same pattern as roundpd/roundps, the Intel compiler
builtins do not: rounds* has an extra operand. Fixes
gcc.target/i386/sse4_1-rounds[sd]-[1234].c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57370 91177308-0d34-0410-b5e6-96231b3b80d8
SDISel typically adds them in. This makes it a little easier
to compare FastISel output with SDISel output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57266 91177308-0d34-0410-b5e6-96231b3b80d8
X86::CL that was used, emit an EXTRACT_SUBREG from the CL
super-register to CL. This more precisely describes how the
CL register is being used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57264 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, just create one, and make sure everything that needs
it can access it. Previously most of the SelectionDAGISel
subclasses all had their own TargetLowering object, which was
redundant with the TargetLowering object in the TargetMachine
subclasses, except on Sparc, where SparcTargetMachine
didn't have a TargetLowering object. Change Sparc to work
more like the other targets here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57016 91177308-0d34-0410-b5e6-96231b3b80d8
local register allocator's physreg liveness doesn't recognize subregs,
so it doesn't know that defs of %ecx that are immediately followed by
uses of %cl aren't dead. This comes up due to the way fast-isel emits
shift instructions.
This is a temporary workaround. Arguably, local regalloc should
handle subreg references correctly. On the other hand, perhaps
fast-isel should use INSERT_SUBREG instead of just assigning to the
most convenient super-register of %cl when lowering shifts.
This fixes MultiSource/Benchmarks/MallocBench/espresso,
MultiSource/Applications/hexxagon, and others, under -fast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56947 91177308-0d34-0410-b5e6-96231b3b80d8
a constant vector ("{0x123, 0x456}" syntax). The fix is to simplify the
_mm_srli_si128 macro, and move the "* 8" from the macro into the compiler
back-end. I can't change the existing __builtins because so many people are
using them :-(."
Patch by Stuart Hastings!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56944 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the 64-bit forms to use+def RSP instead of ESP. This
doesn't fix any real bugs today, but it is more precise and it
makes the debug dumps on x86-64 look more consistent.
Also, add some comments describing the CALL instructions' physreg
operand uses and defs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56925 91177308-0d34-0410-b5e6-96231b3b80d8
`-fno-builtin' flag. Currently, it's used to replace "memset" with "_bzero"
instead of "__bzero" on Darwin10+. This arguably violates the meaning of this
flag, but is currently sufficient. The meaning of this flag should become more
specific over time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56885 91177308-0d34-0410-b5e6-96231b3b80d8
Completely eliminate the TopOrder std::vector. Instead, sort
the AllNodes list in place. This also eliminates the need to
call AllNodes.size(), a linear-time operation, before
performing the sort.
Also, eliminate the Sources temporary std::vector, since it
essentially duplicates the sorted result as it is being
built.
This also changes the direction of the topological sort
from bottom-up to top-down. The AllNodes list starts out in
roughly top-down order, so this reduces the amount of
reordering needed. Top-down is also more convenient for
Legalize, and ISel needed only minor adjustments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56867 91177308-0d34-0410-b5e6-96231b3b80d8
and X86FastISel.cpp into X86MachineFunction.h, so that it
can be shared, instead of having each selector keep track
of its own.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56825 91177308-0d34-0410-b5e6-96231b3b80d8
its size). Adjust various lowering functions to
pass this info through from CallInst. Use it to
implement sseregparm returns on X86. Remove
X86_ssecall calling convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56677 91177308-0d34-0410-b5e6-96231b3b80d8
require RIP-relative addressing and use it to fix a bug
in X86FastISel in x86-64 PIC mode, where it was trying to
use base/index registers with RIP-relative addresses. This
fixes a bunch of x86-64 testsuite failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56676 91177308-0d34-0410-b5e6-96231b3b80d8
information is in an unreachable block, then it's possible that the high/low pc
values won't be set for the dwarf information. E.g., this function:
void abort(void) __attribute__((__noreturn__));
void dead_beef(void) __attribute__ ((noreturn));
int *b;
void dead_beef(void) {
*b=0xdeadbeef;
abort();
}
has a call to "@llvm.dbg.region.end" only in the unreachable block:
define void @dead_beef() noreturn nounwind {
entry:
call void @llvm.dbg.func.start(...)
call void @llvm.dbg.stoppoint(...)
...
call void @abort( ) noreturn nounwind
unreachable
return: ; No predecessors!
call void @llvm.dbg.stoppoint(...)
call void @llvm.dbg.region.end(...)
ret void
}
The dwarf information emitted is something like:
0x00000084: TAG_subprogram [5]
AT_name( "dead_beef" )
AT_external( 0x01 )
AT_prototyped( 0x01 )
AT_decl_file( 0x01 )
AT_decl_line( 0x08 )
Note that this is *not* the best fix for this problem, but a band-aid for an
gaping wound. This code needs to be changed when we revamp our debugging
information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56628 91177308-0d34-0410-b5e6-96231b3b80d8
s/ParamAttr/Attribute/g
s/PAList/AttrList/g
s/FnAttributeWithIndex/AttributeWithIndex/g
s/FnAttr/Attribute/g
This sets the stage
- to implement function notes as function attributes and
- to distinguish between function attributes and return value attributes.
This requires corresponding changes in llvm-gcc and clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56622 91177308-0d34-0410-b5e6-96231b3b80d8
meaning sse_regparm (i.e. float/double values go
in XMM0 instead of ST0). Update documentation
to reflect reality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56619 91177308-0d34-0410-b5e6-96231b3b80d8
catches a fair number of common cases. Note that this currently
causes Fast-ISel to leave behind lots of dead instructions.
Those will be dealt with in subsequent commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56320 91177308-0d34-0410-b5e6-96231b3b80d8
over having it in a register. And wait until after checking type
legality before requesting that the callee address be placed in a
register. Also, fix support for calls with void return type.
This speeds up fast-isel isel time by about 15% and reduces
instruction counts by about 3% overall on certain testcases. It also
changes many indirect calls to direct calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56292 91177308-0d34-0410-b5e6-96231b3b80d8
up some new ascii art to illustrate what it does. This change
currently has no effect on generated code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56270 91177308-0d34-0410-b5e6-96231b3b80d8
- Add linkage to SymbolSDNode (default to external).
- Change ISD::ExternalSymbol to ISD::Symbol.
- Change ISD::TargetExternalSymbol to ISD::TargetSymbol
These changes pave the way to allowing SymbolSDNodes with non-external linkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56249 91177308-0d34-0410-b5e6-96231b3b80d8
isImmediate(), isRegister(), and friends, to avoid confusion
about having two different names with the same meaning. I'm
not attached to the longer names, and would be ok with
changing to the shorter names if others prefer it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56189 91177308-0d34-0410-b5e6-96231b3b80d8
Currently it just holds the calling convention and flags
for isVarArgs and isTailCall.
And it has several utility methods, which eliminate magic
5+2*i and similar index computations in several places.
CallSDNodes are not CSE'd. Teach UpdateNodeOperands to handle
nodes that are not CSE'd gracefully.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56183 91177308-0d34-0410-b5e6-96231b3b80d8
with ConstantInt. This led to fixing a bug in TargetLowering.cpp
using getValue instead of getAPIntValue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56159 91177308-0d34-0410-b5e6-96231b3b80d8
cmp-and-swap reversed the Cmp and Swap arguments; comments
make it clear this is unintentional. Unfortunately, the
x86 BE had a compensating reversal, which is removed here.
PPC is OK.
From inspection of the Alpha code I think it is OK, but
if somebody has that platform please check it out. I
cannot test on that platform.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56091 91177308-0d34-0410-b5e6-96231b3b80d8
objects in llvm.used (thanks Anton). Makes visible
the magic 'l' prefix for symbols on Darwin which are
to be passed through the assembler, then removed at
linktime (previously all references to this had been
hidden in the ObjC FE code, oh well).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55973 91177308-0d34-0410-b5e6-96231b3b80d8
Now with fix, which prevents subtle codegen bug to trigger on darwin.
No fix for bug though, it's still there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55955 91177308-0d34-0410-b5e6-96231b3b80d8
i32>. This is a little messy, but it works.
We should really get rid of the intrinsics, though, since they map
perfectly well to standard LLVM instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55864 91177308-0d34-0410-b5e6-96231b3b80d8
HandlePHINodesInSuccessorBlocks that works FastISel-style. This
allows PHI nodes to be updated correctly while using FastISel.
This also involves some code reorganization; ValueMap and
MBBMap are now members of the FastISel class, so they needn't
be passed around explicitly anymore. Also, SelectInstructions
is changed to SelectInstruction, and only does one instruction
at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55746 91177308-0d34-0410-b5e6-96231b3b80d8
ATOMIC_LOAD_ADD_{8,16,32,64} instead of ATOMIC_LOAD_ADD.
Increased the Hardcoded Constant OpActionsCapacity to match.
Large but boring; no functional change.
This is to support partial-word atomics on ppc; i8 is
not a valid type there, so by the time we get to lowering, the
ATOMIC_LOAD nodes looks the same whether the type was i8 or i32.
The information can be added to the AtomicSDNode, but that is the
largest SDNode; I don't fully understand the SDNode allocation,
but it is sensitive to the largest node size, so increasing
that must be bad. This is the alternative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55457 91177308-0d34-0410-b5e6-96231b3b80d8
64-bit registers from 16-bit and smaller memory locations, prefer
instructions that define the entire 64-bit register, to avoid
partial-register updates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55422 91177308-0d34-0410-b5e6-96231b3b80d8
was inserted or not. This allows bitcast in fast isel to properly handle the case
where an appropriate reg-to-reg copy is not available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55375 91177308-0d34-0410-b5e6-96231b3b80d8
assign it to a version of the xmm register with the regclass that matches its
type. This fixes PR2715, a bug handling some crazy xpcom case in mozilla.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55358 91177308-0d34-0410-b5e6-96231b3b80d8
process up to a higher level. This allows FastISel to leverage
more of SelectionDAGISel's infastructure, such as updating Machine
PHI nodes.
Also, implement transitioning from SDISel back to FastISel in
the middle of a block, so it's now possible to go back and
forth. This allows FastISel to hand individual CallInsts and other
complicated things off to SDISel to handle, while handling the rest
of the block itself.
To help support this, reorganize the SelectionDAG class so that it
is allocated once and reused throughout a function, instead of
being completely reallocated for each block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55219 91177308-0d34-0410-b5e6-96231b3b80d8
instructions that define the full 32 or 64-bit value. When anyexting
from i8 to i16 or i32, it's not necessary to zero out the high
portion of the register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55190 91177308-0d34-0410-b5e6-96231b3b80d8
and use it in FastISelEmitter.cpp, and make FastISel
subtarget aware. Among other things, this lets it work
properly on x86 targets that don't have SSE, where it
successfully selects x87 instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55156 91177308-0d34-0410-b5e6-96231b3b80d8
1. x86-64 byval alignment should be max of 8 and alignment of type. Previously the code was not doing what the commit message was saying.
2. Do not use byte repeat move and store operations. These are slow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55139 91177308-0d34-0410-b5e6-96231b3b80d8
out of X86ISelDAGToDAG.cpp C++ code and into tablegen code.
Among other things, using tablegen for these things makes them
friendlier to FastISel.
Tablegen can handle the case of i8 subregs on x86-32, but currently
the C++ code for that case uses MVT::Flag in a tricky way, and it
happens to schedule better in some cases. So for now, leave the
C++ code in place to handle the i8 case on x86-32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55078 91177308-0d34-0410-b5e6-96231b3b80d8
class hold a MachineRegisterInfo member, and make the
MachineBasicBlock be passed in to SelectInstructions rather
than the FastISel constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55076 91177308-0d34-0410-b5e6-96231b3b80d8
builtins on X86.
Change "lock" instructions to be on a separate line.
This is needed to work around a bug in the Darwin
assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54999 91177308-0d34-0410-b5e6-96231b3b80d8
- update VC projects.
- Add an overload to llvm::Stream for <<, since std::hex and std::dec have type std::ios_base& (*)(std::ios_base&) in VC++. (templating the function don't work, due to ambiguities)
- add ../ on several include in X86/AsmPrinter/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54898 91177308-0d34-0410-b5e6-96231b3b80d8
element inserts with non-constant indices. This fixes
CodeGen/X86/vector-variable-idx.ll on machines that
have SSE4.1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54801 91177308-0d34-0410-b5e6-96231b3b80d8
model, except for external calls; this makes
addressing modes PC-relative. Incomplete.
The assertion at the top of Emitter::runOnMachineFunction
was obviously bogus (always true) so I removed it.
If someone knows what the correct test should be to cover
all the various targets, please fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54656 91177308-0d34-0410-b5e6-96231b3b80d8
LowerSubregs, and fix an x86-64 isel bug that this exposed.
SUBREG_TO_REG for x86-64 implicit zero extension is only safe for
isel to generate when the source is known to always have zeros in
the high 32 bits. The EXTRACT_SUBREG instruction does not clear
the high 32 bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54444 91177308-0d34-0410-b5e6-96231b3b80d8
subreg form on x86-64, to avoid the problem with x86-32
having GPRs that don't have 8-bit subregs.
Also, change several 16-bit instructions to use
equivalent 32-bit instructions. These have a smaller
encoding and avoid partial-register updates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54223 91177308-0d34-0410-b5e6-96231b3b80d8
which is represented in codegen as an 'and' operation. This matches them
with movz instructions, instead of leaving them to be matched by and
instructions with an immediate field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54147 91177308-0d34-0410-b5e6-96231b3b80d8
parallel its analogue, Value::value_use_iterator. The operator* method
now returns the user, rather than the use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54127 91177308-0d34-0410-b5e6-96231b3b80d8
mmx needs its own fancy shuffle logic based on unpack; for now we get correct but awful code.
Also commit Mon Ping's VSETCC patch
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54039 91177308-0d34-0410-b5e6-96231b3b80d8
that include useful information like the name of the
block being viewed and the current phase of compilation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53872 91177308-0d34-0410-b5e6-96231b3b80d8
generic SDNode's (nodes with their own constructors
should do sanity checking in the constructor). Add
sanity checks for BUILD_VECTOR and fix all the places
that were producing bogus BUILD_VECTORs, as found by
"make check". My favorite is the BUILD_VECTOR with
only two operands that was being used to build a
vector with four elements!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53850 91177308-0d34-0410-b5e6-96231b3b80d8
replacement of multiple values. This is slightly more efficient
than doing multiple ReplaceAllUsesOfValueWith calls, and theoretically
could be optimized even further. However, an important property of this
new function is that it handles the case where the source value set and
destination value set overlap. This makes it feasible for isel to use
SelectNodeTo in many very common cases, which is advantageous because
SelectNodeTo avoids a temporary node and it doesn't require CSEMap
updates for users of values that don't change position.
Revamp MorphNodeTo, which is what does all the work of SelectNodeTo, to
handle operand lists more efficiently, and to correctly handle a number
of corner cases to which its new wider use exposes it.
This commit also includes a change to the encoding of post-isel opcodes
in SDNodes; now instead of being sandwiched between the target-independent
pre-isel opcodes and the target-dependent pre-isel opcodes, post-isel
opcodes are now represented as negative values. This makes it possible
to test if an opcode is pre-isel or post-isel without having to know
the size of the current target's post-isel instruction set.
These changes speed up llc overall by 3% and reduce memory usage by 10%
on the InstructionCombining.cpp testcase with -fast and -regalloc=local.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53728 91177308-0d34-0410-b5e6-96231b3b80d8
This is a question of the debugging setup code not
being called at the right time, and it's called from
target-dependent code for some reason. I have only
attempted to fix Darwin, but I'm pretty sure it's
broken elsewhere; I'll leave that to people who can
test it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53254 91177308-0d34-0410-b5e6-96231b3b80d8
MachineMemOperands. The pools are owned by MachineFunctions.
This drastically reduces the number of calls to malloc/free made
during the "Emit" phase of scheduling, as well as later phases
in CodeGen. Combined with other changes, this speeds up the
"instruction selection" phase of CodeGen by 10% in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53212 91177308-0d34-0410-b5e6-96231b3b80d8
hook for each way in which a result type can be
legalized (promotion, expansion, softening etc),
just use one: ReplaceNodeResults, which returns
a node with exactly the same result types as the
node passed to it, but presumably with a bunch of
custom code behind the scenes. No change if the
new LegalizeTypes infrastructure is not turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53137 91177308-0d34-0410-b5e6-96231b3b80d8
moves in order to get correct debug info. Since
I can't imagine how any target could possibly
be any different, I've just stripped out the
option: now all the world's like Darwin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53134 91177308-0d34-0410-b5e6-96231b3b80d8
- Also remove LiveVariables::instructionChanged, etc. Replace all calls with cheaper calls which update VarInfo kill list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53097 91177308-0d34-0410-b5e6-96231b3b80d8
Also, if LV isn't around, then TwoAddr doesn't need to be updating flags, since they won't have been set in the first place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53058 91177308-0d34-0410-b5e6-96231b3b80d8
to be passed the list of value types, and use this
where appropriate. Inappropriate places are where
the value type list is already known and may be
long, in which case the existing method is more
efficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53035 91177308-0d34-0410-b5e6-96231b3b80d8
the need for a flavor operand, and add a new SDNode subclass,
LabelSDNode, for use with them to eliminate the need for a label id
operand.
Change instruction selection to let these label nodes through
unmodified instead of creating copies of them. Teach the MachineInstr
emitter how to emit a MachineInstr directly from an ISD label node.
This avoids the need for allocating SDNodes for the label id and
flavor value, as well as SDNodes for each of the post-isel label,
label id, and label flavor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52943 91177308-0d34-0410-b5e6-96231b3b80d8
purpose, and give it a custom SDNode subclass so that it doesn't
need to have line number, column number, filename string, and
directory string, all existing as individual SDNodes to be the
operands.
This was the only user of ISD::STRING, StringSDNode, etc., so
remove those and some associated code.
This makes stop-points considerably easier to read in
-view-legalize-dags output, and reduces overhead (creating new
nodes and copying std::strings into them) on code containing
debugging information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52924 91177308-0d34-0410-b5e6-96231b3b80d8
it impossible to create a MERGE_VALUES node with
only one result: sometimes it is useful to be able
to create a node with only one result out of one of
the results of a node with more than one result, for
example because the new node will eventually be used
to replace a one-result node using ReplaceAllUsesWith,
cf X86TargetLowering::ExpandFP_TO_SINT. On the other
hand, most users of MERGE_VALUES don't need this and
for them the optimization was valuable. So add a new
utility method getMergeValues for creating MERGE_VALUES
nodes which by default performs the optimization.
Change almost everywhere to use getMergeValues (and
tidy some stuff up at the same time).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52893 91177308-0d34-0410-b5e6-96231b3b80d8
<16 x float> is 64-byte aligned (for some reason),
which gets us into the stack realignment code. The
computation changing FP-relative offsets to SP-relative
was broken, assiging a spill temp to a location
also used for parameter passing. This
fixes it by rounding up the stack frame to a multiple
of the largest alignment (I concluded it wasn't fixable
without doing this, but I'm not very sure.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52750 91177308-0d34-0410-b5e6-96231b3b80d8
shift.
- Add a readme entry for a missing vector_shuffle optimization that results in
awful codegen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52740 91177308-0d34-0410-b5e6-96231b3b80d8
Added abstract class MemSDNode for any Node that have an associated MemOperand
Changed atomic.lcs => atomic.cmp.swap, atomic.las => atomic.load.add, and
atomic.lss => atomic.load.sub
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52706 91177308-0d34-0410-b5e6-96231b3b80d8
shuffle could be skipped. The check is invalid because the loop index i
doesn't correspond to the element actually inserted. The correct check is
already done a few lines earlier, for whether the element is already in
the right spot, so this shouldn't have any effect on the codegen for
code that was already correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52486 91177308-0d34-0410-b5e6-96231b3b80d8
wrong for volatile loads and stores. In fact this
is almost all of them! There are three types of
problems: (1) it is wrong to change the width of
a volatile memory access. These may be used to
do memory mapped i/o, in which case a load can have
an effect even if the result is not used. Consider
loading an i32 but only using the lower 8 bits. It
is wrong to change this into a load of an i8, because
you are no longer tickling the other three bytes. It
is also unwise to make a load/store wider. For
example, changing an i16 load into an i32 load is
wrong no matter how aligned things are, since the
fact of loading an additional 2 bytes can have
i/o side-effects. (2) it is wrong to change the
number of volatile load/stores: they may be counted
by the hardware. (3) it is wrong to change a volatile
load/store that requires one memory access into one
that requires several. For example on x86-32, you
can store a double in one processor operation, but to
store an i64 requires two (two i32 stores). In a
multi-threaded program you may want to bitcast an i64
to a double and store as a double because that will
occur atomically, and be indivisible to other threads.
So it would be wrong to convert the store-of-double
into a store of an i64, because this will become two
i32 stores - no longer atomic. My policy here is
to say that the number of processor operations for
an illegal operation is undefined. So it is alright
to change a store of an i64 (requires at least two
stores; but could be validly lowered to memcpy for
example) into a store of double (one processor op).
In short, if the new store is legal and has the same
size then I say that the transform is ok. It would
also be possible to say that transforms are always
ok if before they were illegal, whether after they
are illegal or not, but that's more awkward to do
and I doubt it buys us anything much.
However this exposed an interesting thing - on x86-32
a store of i64 is considered legal! That is because
operations are marked legal by default, regardless of
whether the type is legal or not. In some ways this
is clever: before type legalization this means that
operations on illegal types are considered legal;
after type legalization there are no illegal types
so now operations are only legal if they really are.
But I consider this to be too cunning for mere mortals.
Better to do things explicitly by testing AfterLegalize.
So I have changed things so that operations with illegal
types are considered illegal - indeed they can never
map to a machine operation. However this means that
the DAG combiner is more conservative because before
it was "accidentally" performing transforms where the
type was illegal because the operation was nonetheless
marked legal. So in a few such places I added a check
on AfterLegalize, which I suppose was actually just
forgotten before. This causes the DAG combiner to do
slightly more than it used to, which resulted in the X86
backend blowing up because it got a slightly surprising
node it wasn't expecting, so I tweaked it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52254 91177308-0d34-0410-b5e6-96231b3b80d8
of apint codegen failure is the DAG combiner doing
the wrong thing because it was comparing MVT's using
< rather than comparing the number of bits. Removing
the < method makes this mistake impossible to commit.
Instead, add helper methods for comparing bits and use
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52098 91177308-0d34-0410-b5e6-96231b3b80d8
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52044 91177308-0d34-0410-b5e6-96231b3b80d8